Labor Market Competition and Inequality

Jose Garcia-Louzao¹ Alessandro Ruggieri²

¹Lietuvos Bankas, Vilnius University, and CESifo ²CUNEF Universidad

Workshop on Identifying Worker and Firm Quality @ IAB

May 2025

The views expressed here do not necessarily reflect the position of the Lietuvos Bankas or the Eurosystem

Labor market inequality

- Traditional (competitive) view of wage inequality → you earn what you are
 - supply side, e.g., schooling
 - demand side, e.g., biased technological change
 - institutions, e.g., minimum wage

Labor market inequality and firms

- Traditional (competitive) view of wage inequality → you earn what you are
 - supply side, e.g., schooling
 - demand side, e.g., biased technological change
 - institutions, e.g., minimum wage
- Firms \neq price takers \rightarrow place them at the center academic and policy debate
 - widespread wage differences across firms, regardless of the "who" (Card, Cardoso, Heining, and Kline, 2018)
 - firms' labor market power is a global phenomenon (Manning, 2021, Armangué-Jubert, Guner, and Ruggieri, 2024)
 - monopsony theory links labor market power and firm-driven wage inequality (Robinson, 1933; Burdett and Mortensen, 1998; Manning, 2003)

This paper in a nutshell

- Does wage inequality and labor market competition evolve together?
 - higher inequality in less competitive markets in the cross-section (Weber, 2015; Bassier, 2023)
 - inequality falls after crisis episodes due to increased labor market competition (Autor et al., 2024; Dustmann et al., 2024)
 - what about the (long-run) dynamics? This paper contribution to the literature

This paper in a nutshell

- Does wage inequality and labor market competition evolve together?
 - higher inequality in less competitive markets in the cross-section (Weber, 2015; Bassier, 2023)
 - inequality falls after crisis episodes due to increased labor market competition (Autor et al., 2024; Dustmann et al., 2024)
 - what about the (long-run) dynamics? This paper contribution to the literature
- Using Lithuanian Social Security data spanning two decades
 - 1. the role of firm-specific wage components in wage inequality over development
 - firms explain almost entirely the dynamics of inequality along the development path
 - 2. the evolution of labor market competition over economic growth
 - negative gradient between firm's labor market power and economic growth
 - 3. do they move together?
 - if competition and inequality were not correlated, the fall in inequality would be 17% lower
 - suggestive evidence of employment outside options from EU labor markets as the catalyst
 - $\bullet~$ EU LD expanded the most \equiv LT sectors where competition (inequality) increase (decreased) more

Lithuanian context offers an interesting case to assess the joint dynamics of wage inequality and labor market competition in the long-run

- The economy more than doubled in size → from low- to high-income country growth
- Sharp decline in wage inequality, e.g., Gini halved between 2000 and 2020 Gini and co.
- Critical changes in the labor market since joining the EU in 2004
 - MW flagship policy to boost income at the bottom, increased by $\sim\!235\%$ in real terms
 - the number of firms per worker as well as the labor share have risen
 - (labor) market concentration & wage markdowns has been steadily declining (Ding, Garcia-Louzao, and Jouvanceau, 2023)

Firms and workers in the variance of wages

From the AKM model (Abowd, Kramarz, and Margolis, 1999)

$$y_{it} = \eta_i + \psi_{j(i,t)} + X_{it}\Omega + \epsilon_{it}$$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \psi_{j(i,t)} + \chi_{it}\Omega + \epsilon_{it}$
 $y_{it} = \eta_i + \chi_{it}\Omega + \chi_{it}\Omega + \kappa_{it}\Omega + \kappa$

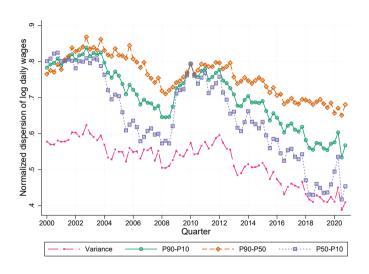
to the variance decomposition

$$var(y_{it}) = var(\eta_i) + var(\psi_{j(i,t)}) + var(X_{it}\Omega) + var(\epsilon_{it})$$

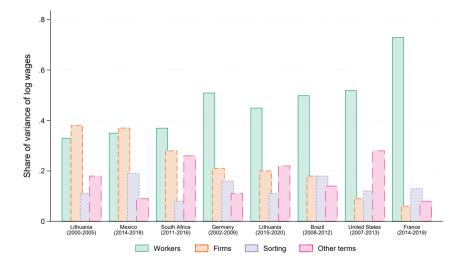
$$+ 2 \times \left[\underbrace{cov(\eta_i, \psi_{j(i,t)})}_{sorting} + cov(\eta_i, X_{it}\Omega) + cov(\psi_{j(i,t)}, X_{it}\Omega)\right]$$

identifying assumptions

Social Security data


- Administrative data from the State Social Insurance Fund Board (SoDra)
 - 25% random sample of the Social Security population in 2000-2020
 - workers: identifier, gender, age, employment status, length of the employment relationship, insured labor income but no hours or education info!
 - firms: identifier, location, sector, wage bill, and firm size at the end of the year

Estimation sample


- quarterly panel of private sector workers, 2000Q1 to 2020Q4
- main job workers employed for \geq 15days & earning \geq 0.5 \times monthly MW in a quarter
- wage metric: real daily wages = quarterly labor earnings / days worked in the quarter
- cleaned data: 532,500 workers in 143,177 firms over 16,735,075 observations
- connected set: 526,549 workers in 137,514 firms over 16,637,948 observations

summary statistics

Wage inequality significantly fell between 2000 and 2020

Contribution of firms and workers to declining inequality resembles development

cross-section validation twfe time-varying effects estimation sample leave-one-out estimator firm clusters

Compression of firm-specific wage components behind the fall in inequality

	2000-05 to 2015-20			
	AKM	KSS	BLM	
Change in Var(y)	-0.131	-0.136	-0.123	
Contribution				
$Var(\eta)$	-0.088	-0.043	-0.233	
$Var(\psi)$	0.898	0.930	0.639	
$Var(X\Omega)$	-0.067	-0.068	-0.148	
$Var(\epsilon)$	0.058	0.059	0.096	
$2 \times Cov(\eta, \psi)$	0.184	0.109	0.504	
$2 \times Cov(\eta, X\Omega)$	0.036	0.038	0.121	
$2 \times Cov(\psi, X\Omega)$	-0.021	-0.024	0.022	
Counterfactual change in $Var(y)$				
1. Fixed variance of firm effects	-0.013	-0.017	-0.045	
2. Fixed corr. of firm and worker effects	-0.117	-0.150	-0.109	
3. Both 1 and 2	0.012	-0.024	0.024	

What can be behind this decline?

- Structural transformation: reallocation of labor towards sectors with lower dispersion of pay policies
 - FHK decomposition suggests is a within-sector phenomenon FHK

What can be behind this decline?

- Structural transformation: reallocation of labor towards sectors with lower dispersion of pay policies
 - FHK decomposition suggests is a within-sector phenomenon FHK
- Policy: truncated pay distribution due to cumulative increase of the minimum wage \sim x3 in nominal terms
 - no correlation btw more affected sectors and larger declines in firm-driven inequality

What can be behind this decline?

- Structural transformation: reallocation of labor towards sectors with lower dispersion of pay policies
 - FHK decomposition suggests is a within-sector phenomenon
- Policy: truncated pay distribution due to cumulative increase of the minimum wage \sim x3 in nominal terms
 - no correlation btw more affected sectors and larger declines in firm-driven inequality
- Labor market competition?
 - monopsony theory: employer market power and firm-driven inequality are closely linked

Monopsony power and firm-driven wage inequality

- Dynamic monopsony model a la Manning (2003, 2021)
 - firms are heterogeneous in their productivity, z_{jt}
 - production function w/ decreasing returns to (homogeneous) labor, L_{jt}
 - firms face an upward-sloping labor supply curve labor that depends on recruitment, $R(w_{jt})$, and separation, $s(w_{it})$ rates
- Optimal labor demand condition can be rearranged to show that

$$var[\log w_{jt}] \approx \left(\frac{1}{1+\varepsilon_t}\right)^2 var[\log z_{jt}]$$
 with $\varepsilon_t = \varepsilon_{Rt} - \varepsilon_{sept}$

- ε is elasticity of labor supply to wages of firm j
 - competitive model: $\varepsilon = \infty \Rightarrow$ the law of one price
 - imperfect competition: $\varepsilon < \infty \Rightarrow$ firm-specific wages result in firm-driven wage inequality
 - higher competition ⇒ lower firm-driven inequality
- Does labor market competition increased?

Estimating the firm labor supply elasticity \equiv labor market competition

separation semi-elasticity
$$P(oldsymbol{s}_{ijt}=oldsymbol{1})=lpha+eta\log oldsymbol{w}_{ijt}+oldsymbol{X}_{ijt}\Lambda+oldsymbol{\xi}_{ijt}$$

- s_{ijt} stands for the separation of worker i from employer j at quarter t
 - all separations and EE transitions at a quarterly frequency
- w_{iit} is the corresponding wage measure
 - worker's daily wage
 - AKM firm-specific wage component [IV'ed ~ Bassier et al., 2022]
- X_{ijt} is a vector of controls
 - estimated AKM worker fixed effect + age, gender, industry, and time effects
- ξ_{ijt} is the error term
- Firm labor supply elasticity: FLSE $\equiv -2 imes rac{\hat{eta}}{\overline{s_{iit}}}$ (Manning, 2003)

The firm's labor supply elasticity has increased over the last two decades

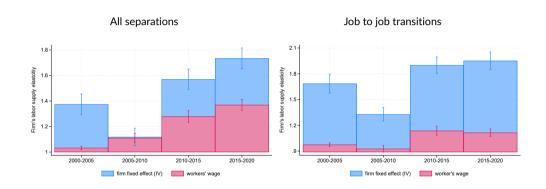


table w/ estimates

FLSE increasing likely to reflect competition rather than LM segmentation or concentration

- Changes in the sensitivity of worker mobility to wages might reflect other structural forces taking place in the economy rather than changes in labor market competition
 - FLSE from Social Security data negatively correlated with wage markdowns from balance sheet data, as predicted by theory flse vs md
- Worker heterogeneity can lead to market segmentation, affecting FLSE without real changes in competition
 - FLSE increased for both workers below and above the median of AKM worker FEs skill-specific flse
- With strategic interaction between employers as in Berger et al., 2022, FLSE can increase due to MW-induced changes in concentration
 - no correlation between ↑ FLSE and ∆wage bill-HHI or MW incidence firm granularity MW incidence

Did labor market competition and firm-drive inequality move together?

$$\Delta \mathsf{var}_{\mathsf{s}\mathsf{t}}[\psi_j] = \alpha + \beta \Delta \varepsilon_{\mathsf{s}\mathsf{t}} + \mathsf{X}_{\mathsf{s}\mathsf{t}}\Omega + v_{\mathsf{s}\mathsf{t}}$$

- $\Delta \text{var}_{st}[\psi_i]$ sector-specific changes in the variance of firm FE, 2000-05 to 2015-20
- $\Delta \varepsilon_{st}$ sector-specific changes in firm's labor supply elasticity, 2000-05 to 2015-20
- X sector-specific vector of controls
 - "model-based" \equiv firm's labor supply elasticity in 2015-20 + changes in firm's size dispersion
 - minimum wage workers in 2000-05, account for sustained MW hikes and potential reallocation effects (Dustmann et al., 2021)
 - changes in LM concentration, account for market structure dynamics and its impact on wage inequality (Deb et al., 2024)

Dispersion of firm pay policies negatively correlated with LM competition

	Δ var $_{st+1}[\psi]$			ΔP90P10	∆P50P10	ΔP90P50
	OLS	OLS	ORIV	ORIV	ORIV	ORIV
	(1)	(2)	(3)	(4)	(5)	(6)
$\Delta \varepsilon_{st+1}$	-0.0128	-0.0137	-0.0379	-0.1714	-0.1371	-0.0343
	(0.0047)	(0.0047)	(0.0175)	(0.0047)	(0.0741)	(0.0577)
Implied $\%\Delta \text{ var}[y]$	5.7	6.1	16.9	-	-	-
Model-based controls	√					
Full set of controls		\checkmark	✓	\checkmark	\checkmark	\checkmark
No. sectors	74	74	74	74	74	74

no correlation w/ WFE or sorting

EU accession potential trigger for increased competition and fall in inequality

- Free mobility of labor after EU enlargement in 2004 triggered mass emigration, as LT workers got access to more and better-paid labor markets, affecting domestic wages
 - Lithuanians working in pre-2004 EU countries amounted to more than 10% of Lithuania's population in 2020
 - 1% increase in the emigration rate of Lithuanians towards Ireland was associated with a 0.66% increase in the wages of those who stayed in Lithuania (Elsner, 2013)
- More job opportunities can foster job shopping and reduce job stickiness → wage compression among domestic firms in monopsonistic labor markets (Autor et al., 2024)

Employment outside options for Lithuanian workers in pre-2004 EU countries

 Employment outside options for LT workers as sector-specific labor demand changes across EU countries between 2000 and 2020 (Caldwell and Harmon, 2019)

$$\Delta x_{s} = \sum_{c \in \mathcal{C}} \mu_{c2000} \Delta x_{cs}$$

- Δx_{CS} refers to changes in total hours worked (Δh) or labor compensation (Δw) in sector s and country c between 2000 and 2020
- μ_{c2000} Lithuanians residing in pre-2004 EU countries in 2000
- Δx_s sector-level developments in the EU labor markets, giving more weight to the EU countries with a large presence of Lithuanian workers before 2004

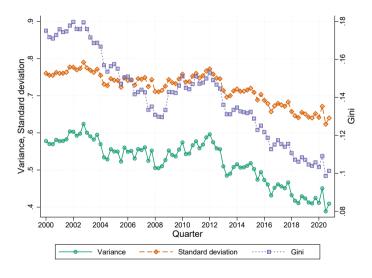
EU sectors with the largest labor demand expansions are also the ones with the greatest competition and wage inequality

	Comp	etition	Inequality			
	$\Delta arepsilon_{st+1}$		∆var _{st}	$_{+1}[\psi_j]$		
	(1)	(2)	(3)	(4)		
Δw_{st+1}	0.913		-0.053			
	(0.405)		(0.024)			
Δh_{st+1}		0.763		-0.051		
		(0.449)		(0.024)		
No. sectors	74	74	74	74		

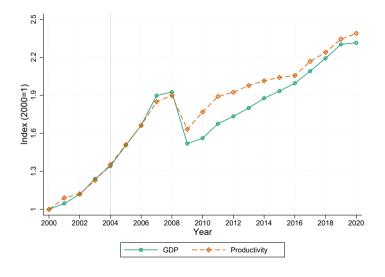
Taking stock

- Three main findings
 - firms played a critical role in declining inequality over Lithuania's development
 - · labor market competition increased with economic growth and reduced barriers to mobility
 - fall in wage inequality if it was uncorrelated with labor market competition \approx 17% lower
- Suggestive evidence that more and better outside options for LT workers after gaining access to EU labor markets spurred labor market competition among LT firms
- Wage inequality can be consequence of market failures → room for labor market and competition policies to tackle inequality and increase welfare

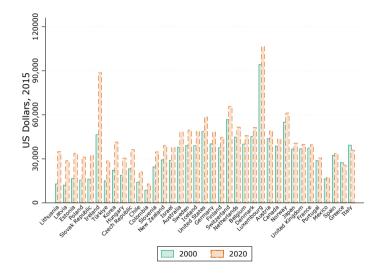
THANK YOU


jgarcialouzao@lb.lt

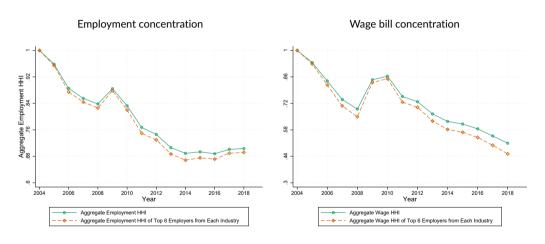
Contribution to the state of knowledge


- Firms explain around 20% of wage dispersion in developed economies and even more in developing countries (Card et al., 2013; Card et al. 2018; Alvarez et al., 2018; Song et al., 2019; Perez Perez and Nuno-Ledesma, 2022; Bassier, 2023)
 - + dynamics of firm-driven wage dispersion over the course of a country's development
- Measuring labor market power and its dynamics (Hirsch et al., 2018; Azar et al., 2022; Bassier et al., 2022; Lamadon et al., 2022; Diez et al., 2022; Webber, 2022; Armangue-Jubert et al., 2023)
 - + labor market competition in a context of economic growth
- Labor market power and wages (Webber 2015; Bassier, 2023; Autor et al., 2023; Deb et al., 2024)
 - + labor market competition and firm-driven inequality over time
- Minimum wage policy main explanation behind declining inequality in CEE (Magda et al., 2021, Garcia-Louzao and Tarasonis, 2023)
 - + complementary explanation coming from market forces: competition

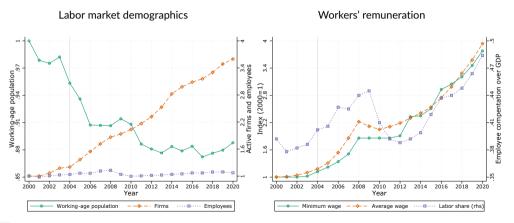
The fall of inequality under alternative indices



The Lithuanian economy experienced extraordinary economic growth



Among OECD countries, Lithuania experienced the largest growth in GDPpc

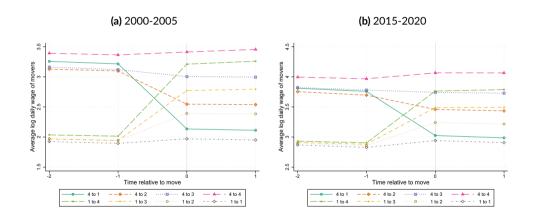


Labor market concentration computed from balance sheet data has been steadily decreasing

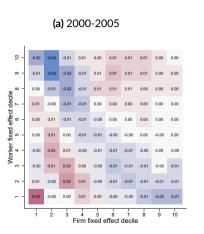
EU accession unleashed in-house potential for new firms and created opportunities abroad for workers: LS \downarrow & LD \uparrow

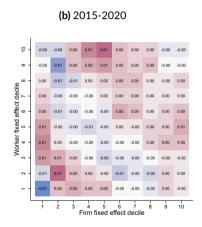
Identification of worker and firm effects

- Connected set
 - only connected firms and their workers contribute to the identification
 - connected firms \equiv firms through which workers move
- Identifying assumptions
 - a1 exogenous mobility \rightarrow no correlation between mobility and the time-varying component of the residual
 - a2 additive separability \rightarrow no interaction of worker and firm heterogeneity
- Limited mobility bias
 - sufficient mobility to quantify the dispersion of firm-specific wage components
 - s1 KSS leave-one-out estimator to correct the bias (Kline et al., 2020)
 - s2 BLM firm-clusters to reduce dimensionality (Bonhomme et al., 2019, 2022)


Summary statistics: Cleaned sample and connected set

	2000-2020		2000-2005		2015-2020	
	Cleaned data	Connected set	Cleaned data	Connected set	Cleaned data	Connected set
Wages						
Mean	2.905	2.909	2.525	2.539	3.252	3.278
Std.Dev.	0.779	0.777	0.764	0.759	0.679	0.667
Firms	143,461	137,783	64,509	56,698	78,103	62,387
Direct movers	296,159	295,942	124,873	124,425	124,595	123,530
Movers	391,670	391,229	173,540	172,827	165,418	163,837
Workers	532,495	526,536	330,161	320,625	333,238	314,337
Direct moves	815,911	815,539	218,456	217,821	233,805	232,016
Job changes	1,399,550	1,398,910	341,133	340,191	349,526	347,079
Worker-quarters	16,735,572	16,638,459	4,510,485	4,409,926	4,957,606	4,696,179


Firm and worker heterogeneity explain two-thirds of cross-sectional inequality


AKM		KSS		BLM	
Component	Share	Component	Share	Component	Share
0.604	-	0.595	-	0.606	-
0.165	0.274	0.156	0.263	0.203	0.335
0.189	0.312	0.171	0.287	0.092	0.153
0.089	0.147	0.089	0.149	0.066	0.110
0.121	0.200	0.121	0.204	0.148	0.245
0.041	0.068	0.053	0.088	0.078	0.129
-0.002	-0.004	-0.003	-0.005	-0.007	-0.012
0.002	0.003	0.003	0.004	0.024	0.040
	0.604 0.165 0.189 0.089 0.121 0.041 -0.002	Component Share 0.604 - 0.165 0.274 0.189 0.312 0.089 0.147 0.121 0.200 0.041 0.068 -0.002 -0.004	Component Share Component 0.604 - 0.595 0.165 0.274 0.156 0.189 0.312 0.171 0.089 0.147 0.089 0.121 0.200 0.121 0.041 0.068 0.053 -0.002 -0.004 -0.003	Component Share Component Share 0.604 - 0.595 - 0.165 0.274 0.156 0.263 0.189 0.312 0.171 0.287 0.089 0.147 0.089 0.149 0.121 0.200 0.121 0.204 0.041 0.068 0.053 0.088 -0.002 -0.004 -0.003 -0.005	Component Share Component Share Component 0.604 - 0.595 - 0.606 0.165 0.274 0.156 0.263 0.203 0.189 0.312 0.171 0.287 0.092 0.089 0.147 0.089 0.149 0.066 0.121 0.200 0.121 0.204 0.148 0.041 0.068 0.053 0.088 0.078 -0.002 -0.004 -0.003 -0.005 -0.007

Wage changes after a switch by quarterly of firm fixed effects are near symmetric

Average residuals by deciles of worker and firm fixed effects suggest that match effects are not critical

Contribution of workers and firms under alternative specifications of time-varying effects

	Sex-specific ti	me effects	Wages cer	itered	Residual w	Residual wages		
	Component	Share	Component	Share	Component	Share		
Var(y)	0.604	-	0.518	-	0.511	-		
$Var(\eta)$	0.170	0.281	0.164	0.317	0.163	0.319		
$Var(\psi)$	0.189	0.313	0.190	0.367	0.188	0.368		
$Var(X\Omega)$	0.090	0.149	0.007	0.013	-	-		
$Var(\epsilon)$	0.120	0.199	0.121	0.234	0.121	0.238		
$2 \times Cov(\eta, \psi)$	0.042	0.069	0.041	0.080	0.039	0.077		
$2 \times Cov(\eta, X\Omega)$	-0.007	-0.011	-0.004	-0.007	-	-		
$2 \times Cov(\psi, X\Omega)$	0.001	0.001	-0.001	-0.002	-	-		

Contribution of workers and firms under alternative sample selection

	LM attach	4 attachment MW			Public se	ctor	No welfare benefits	
	Component	Share	Component	Share	Component	Share	Component	Share
Var(y)	0.618	-	0.395	-	0.564	-	0.608	-
$Var(\eta)$	0.178	0.289	0.146	0.369	0.183	0.325	0.169	0.300
$Var(\psi)$	0.205	0.332	0.102	0.259	0.148	0.263	0.205	0.364
$Var(X\Omega)$	0.088	0.143	0.077	0.194	0.088	0.156	0.100	0.177
$Var(\epsilon)$	0.117	0.189	0.067	0.171	0.115	0.203	0.099	0.175
$2 \times Cov(\eta, \psi)$	0.031	0.050	0.018	0.045	0.034	0.060	0.041	0.072
$2 \times Cov(\eta, X\Omega)$	-0.003	-0.004	-0.005	-0.014	-0.007	-0.012	-0.004	-0.007
$2 \times Cov(\psi, X\Omega)$	0.000	0.001	-0.009	-0.023	0.002	0.004	-0.002	-0.003

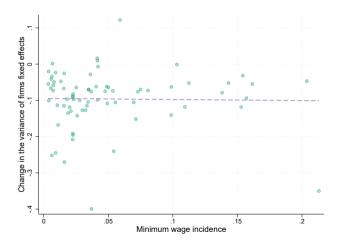
Contribution of workers and firms under alternative wage definitions to classify firms

	BLM w/ worke	er variables	BLM w/ firm	variables
	Component	Share	Component	Share
Var(y)	0.607	-	0.607	-
$Var(\eta)$	0.195	0.322	0.251	0.415
$Var(\psi)$	0.103	0.170	0.074	0.122
$Var(X\Omega)$	0.082	0.136	0.083	0.137
$Var(\epsilon)$	0.145	0.238	0.153	0.252
$2 \times Cov(\eta, \psi)$	0.078	0.128	0.044	0.072
$2 \times Cov(\eta, X\Omega)$	-0.004	-0.007	-0.007	-0.011
$2 \times Cov(\psi, X\Omega)$	0.008	0.013	0.009	0.015

Contribution of workers and firms under alternative number of firm clusters

	BLM 150		BLM 50	00	BLM 2500		
	Component	Share	Component	Share	Component	Share	
Var(y)	0.606	-	0.606	-	0.606	-	
$Var(\eta)$	0.212	0.349	0.204	0.337	0.204	0.336	
$Var(\psi)$	0.088	0.145	0.091	0.151	0.094	0.154	
$Var(X\Omega)$	0.068	0.112	0.067	0.110	0.067	0.111	
$Var(\epsilon)$	0.150	0.247	0.149	0.245	0.148	0.244	
$2 \times Cov(\eta, \psi)$	0.074	0.121	0.078	0.129	0.077	0.127	
$2 \times Cov(\eta, X\Omega)$	-0.007	-0.012	-0.007	-0.012	-0.007	-0.012	
$2 \times Cov(\psi, X\Omega)$	0.023	0.038	0.024	0.040	0.024	0.040	

Contribution of workers and firms under alternative leave-one-out units


	Leave-out-ob	servations	Leave-out-workers		
	Component	Share	Component	Share	
Var(y)	0.599	-	0.595	-	
$Var(\eta)$	0.157	0.263	0.156	0.263	
$Var(\psi)$	0.177	0.295	0.171	0.287	
$Var(X\Omega)$	0.088	0.148	0.089	0.149	
$Var(\epsilon)$	0.121	0.202	0.121	0.204	
$2 \times Cov(\eta, \psi)$	0.050	0.084	0.053	0.089	
$2 \times Cov(\eta, X\Omega)$	-0.003	-0.004	-0.003	-0.005	
$2 \times Cov(\psi, X\Omega)$	0.002	0.004	0.003	0.004	

Within vs between sector changes

Sectoral decomposition

		AKM		BLM
	Estimate (1)	Contribution (%) (2)	Estimate (3)	Contribution (%) (4)
Change in $Var(y)$	-0.131	-	-0.136	-
Change in $Var(\psi)$	-0.118	89.8	-0.127	93.0
Between-sector	0.016	-12.1	0.006	-4.5
Within-sector	-0.134	112.1	-0.133	104.5

Variance of firm fixed effects vs MW

The firm's labor supply elasticity has increased over the last two decades

A. 2000-2005	Worke	r wage	Firm fixe	ed effect	IV-Firm fi	xed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0601	-0.0250	-0.0485	-0.0220	-0.0800	-0.0433		
•	(0.0004)	(0.0003)	(0.0019)	(0.0010)	(0.0024)	(0.0014)		
ε_{LS}	1.0329	0.9747	0.8327	0.8561	1.3746	1.6861		
	(0.0068)	(0.0104)	(0.0083)	(0.0125)	(0.0417)	(0.0556)		
First stage F-statistic					3,06	2.27		
Observations	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923		
B. 2015-2020	Worke	r wage	Firm fixe	ed effect	IV-Firm fi	IV-Firm fixed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0773	-0.0289	-0.0565	-0.0246	-0.0979	-0.0507		
	(0.0005)	(0.0003)	(0.0015)	(0.0009)	(0.0023)	(0.0013)		
ϵ_{LS}	1.3693	1.1145	1.0007	0.9478	1.7340	1.9514		
	(0.0216)	(0.0220)	(0.0265)	(0.0125)	(0.0415)	(0.0519)		
First stage F-statistic					13,7	57.87		
Observations	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064		

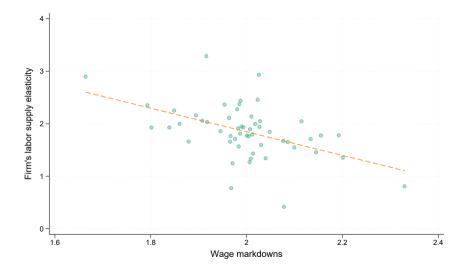
back complementary log-log alternative set of controls

Separation elasticity using a complementary log-log model

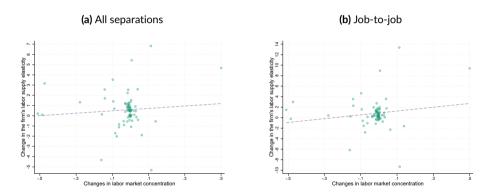
A. 2000-2005	Worke	r wage	IV-Firm fi	xed effect		
	Sep	EE Sep	Sep	EE Sep		
€sep	-0.5550	-0.4747	-0.6712	-0.7611		
	(0.0034)	(0.0046)	(0.0366)	(0.0481)		
Observations	4,149,923	4,149,923	4,149,923	4,149,923		
B. 2015-2020	Worke	r wage	IV-Firm fixed effect			
	Sep	EE Sep	Sep	EE Sep		
Esep	-0.6692	-0.5086	-0.8459	-0.8666		
•	(0.0037)	(0.0050)	(0.0203)	(0.0224)		
Observations	4,404,064	4,404,064	4,404,064	4,404,064		

Separation elasticity using alternative controls

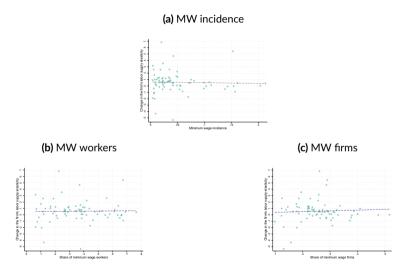
A. 2000-2005				Worke	r wage							IV-Firm fi	xed effect			
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep										
Esep	-0.0475	-0.0209	-0.0622	-0.0269	-0.0598	-0.0249	-0.0647	-0.0191	-0.0627	-0.0379	-0.0815	-0.0472	-0.0794	-0.0431	-0.0989	-0.0460
	(0.0004)	(0.0003)	(0.0004)	(0.0003)	(0.0004)	(0.0003)	(0.0003)	(0.0002)	(0.0022)	(0.0014)	(0.0023)	(0.0015)	(0.0024)	(0.0014)	(0.0024)	(0.0014)
Observations	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,923	4,149,876	4,149,876	4,149,923	4,149,923	4,149,923	4,149,923
A. 2015-2020					r wage							IV-Firm fi	xed effect			
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep										
Esep	-0.0684	-0.0254	-0.0795	-0.0298	-0.0766	-0.0288	-0.0750	-0.0222	-0.0851	-0.0457	-0.1062	-0.0666	-0.0969	-0.0503	-0.1394	-0.0601
	(0.0004)	(0.0003)	(0.0005)	(0.0003)	(0.0005)	(0.0003)	(0.0004)	(0.0002)	(0.0021)	(0.0013)	(0.0025)	(0.0015)	(0.0023)	(0.0013)	(0.0026)	(0.0015)
Observations	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,064	4,404,024	4,404,024	4,404,064	4,404,064	4,404,064	4,404,064
Tenure FE	Y	Y	N	N	N	N	N	N	Υ	Y	N	N	N	N	N	N
Sector×Municipality FE	N	N	Υ	Υ	N	N	N	N	N	N	Υ	Υ	N	N	N	N
Family controls	N	N	N	N	Υ	Υ	N	N	N	N	N	N	Y	Y	N	N
AKM worker type	Y	Y	Υ	Υ	Υ	Υ	N	N	Υ	Υ	Υ	Υ	Υ	Y	N	N


Elasticity for workers with FE below median

A. 2000-2005	Worke	r wage	Firm fixe	ed effect	IV-Firm fi	xed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0674	-0.0235	-0.0552	-0.0241	-0.0856	-0.0451		
•	(0.0007)	(0.0004)	(0.0029)	(0.0013)	(0.0036)	(0.0018)		
ϵ_{LS}	0.9520	0.8651	0.7798	0.8872	1.2093	1.6626		
	(0.0092)	(0.0148)	(0.0413)	(0.0462)	(0.0514)	(0.0665)		
First stage F-statistic					2,32	8.86		
Observations	2,074,976	2,074,976	2,074,976	2,074,976	2,074,976	2,074,976		
B. 2015-2020	Worke	r wage	Firm fixe	ed effect	IV-Firm fi	IV-Firm fixed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0875	-0.0271	-0.0730	-0.0299	-0.1036	-0.0538		
•	(0.0007)	(0.0005)	(0.0021)	(0.0011)	(0.0036)	(0.0019)		
ϵ_{LS}	1.3317	1.0121	1.1122	1.1173	1.5776	2.0090		
LO	(0.0112)	(0.0178)	(0.0317)	(0.0428)	(0.0550)	(0.0695)		
First stage F-statistic				<u> </u>	9,97	5.29		
That stage I statistic								


Elasticity for workers with FE above median

A. 2000-2005	Worke	r wage	Firm fixe	ed effect	IV-Firm fi	IV-Firm fixed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0526	-0.0249	-0.0403	-0.0185	-0.0742	-0.0405		
•	(0.0005)	(0.0004)	(0.0015)	(0.0010)	(0.0020)	(0.0014)		
ϵ_{LS}	1.1529	1.0236	0.8842	0.7613	1.6261	1.6690		
	(0.0108)	(0.0148)	(0.0332)	(0.0425)	(0.0430)	(0.0570)		
First stage F-statistic					3,57	6.39		
Observations	2,074,947	2,074,947	2,074,947	2,074,947	2,074,947	2,074,947		
B. 2015-2020	Worke	r wage	Firm fixe	ed effect	IV-Firm fi	IV-Firm fixed effect		
	Sep	EE Sep	Sep	EE Sep	Sep	EE Sep		
	(1)	(2)	(3)	(4)	(5)	(6)		
β	-0.0668	-0.0293	-0.0417	-0.0193	-0.0910	-0.0474		
•	(0.0006)	(0.0004)	(0.0014)	(0.0010)	(0.0021)	(0.0014)		
ϵ_{LS}	1.4158	1.1625	0.8840	0.7665	1.9285	1.8814		
- L3	(0.0134)	(0.0175)	(0.0301)	(0.0394)	(0.0449)	(0.0562)		
First stage F-statistic	-	·	-		10,12	22.45		
Observations	2,202,027	2,202,027	2,202,027	2,202,027	2,202,027	2,202,027		


Sector-level elasticities resemble markdowns from producers data \rightarrow labor market competition increased

Firm granularity: Elasticity vs concentration

Firm granularity: Elasticity vs MW

Contribution of changes in competition to changes in overall wage inequality

The contribution of competition to overall inequality can be calculated as

$$\sum_{s=1}^{S} \frac{L_{st}}{L_t} \hat{\beta}_1 \Delta \varepsilon_{st+1}$$

- L is the number of workers
- $\hat{\beta}_1$ is the effect of competition on the variance of firm fixed effects
- ε_s sector-specific firm labor supply elasticity

Changes in labor market competition can explain a reduction in wage inequality through firm-specific wage components equal to

$$0.9 \times \left(\frac{\sum_{s=1}^{S} \frac{L_{st}}{L_t} \hat{\beta}_1 \Delta \varepsilon_{st+1}}{\sum_{s=1}^{S} \frac{L_{st}}{L_t} \Delta \mathsf{var}_{st+1} [\psi_{jt+1}]}\right) \times 100\%$$

Increased competition in the labor market does not affect the dispersion of worker fixed effects or sorting

A. $\Delta var_{st+1}[\eta]$	Worke	r wage	lv-Firm fi	xed effect
	OLS	IV	OLS	IV
	(1)	(2)	(3)	(4)
Δ Firm LSE	-0.0248	0.0848	-0.0174	-0.0218
	(0.0352)	(0.1108)	(0.0090)	(0.0189)
B. $\Delta cov_{st+1}[\psi, \eta]$	Worke	r wage	IV-Firm fi	xed effect
B. $\Delta cov_{\mathit{st}+1}[\psi,\eta]$	Worke OLS	r wage IV	IV-Firm fi	xed effect IV
B. $\Delta cov_{\mathit{st}+1}[\psi,\eta]$				
B. $\Delta cov_{st+1}[\psi, \eta]$ $\Delta Firm LSE$	OLS	ĪV	OLS	IV
3.7.17.77	OLS (1)	IV (2)	OLS (3)	IV (4)
3.7.17.77	OLS (1) 0.0121	IV (2) 0.0098	OLS (3) -0.0090	IV (4) 0.0293
Δ Firm LSE	OLS (1) 0.0121	IV (2) 0.0098	OLS (3) -0.0090	IV (4) 0.0293