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Abstract

We study the impact of incomplete consumption risk-sharing on land mis-
allocation in rural economies. We develop a general equilibrium model of
land cultivation choices, where heterogeneous agricultural households face
idiosyncratic output shocks and insure themselves by participating in a risk-
sharing arrangement. Incomplete insurance distorts households’ land cultiva-
tion choices, leading them away from maximizing expected incomes and re-
sulting in land misallocation. Using the latest ICRISAT panel data from rural
India, we quantify the losses attributable to limited risk-sharing. Completing
insurance markets leads to output and welfare gains of 19% and 29%, respec-
tively. Improving the functioning of consumption insurance markets can yield

gains comparable to those achieved by removing distortions in factor markets.
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1 Introduction

Markets in the developing world are plagued by several frictions, and insurance
markets are no exception to this general rule. Barriers to risk-sharing affect the al-
location of consumption (Townsend, 1994; Udry, 1994; Fafchamps, 2011), produc-
tion choices (Benjamin, 1992), temporary migration (Morten, 2019), and engage-
ment in non-farm entrepreneurship (De Giorgi et al., 2024). Incomplete insurance
also diminishes the incentives for acquiring risky inputs—an argument originally
advanced by Arrow (1971)—lowering productivity and increasing consumption
inequality among farmers in developing countries (Donovan, 2021).

In this paper, we show that imperfections in insurance markets, taking the form
of incomplete consumption risk-sharing, have implications for the allocative effi-
ciency of land among farmers, resulting in large output and welfare losses. While
existing literature emphasizes frictions in land markets—such as inheritance rules,
tax policy, and tenancy regulation—as key sources of misallocation (Adamopoulos
and Restuccia, 2014; Adamopoulos et al., 2022), we show that land misallocation
arising from limited consumption risk-sharing can generate substantial output and
welfare losses, beyond other market frictions. Our quantitative findings for rural
India imply that completing insurance markets can substantially reduce land mis-
allocation, leading to output and welfare gains of 19% and 29%, respectively.

In village economies, shocks from harvest failures, illness, and pests leave house-
holds vulnerable to severe hardship. Because formal borrowing and saving are
very limited in these environments, insurance against idiosyncratic income fluctu-
ations largely relies on informal arrangements such as gift exchanges and personal
loans.! The literature indicates that imperfections in these arrangements are perva-
sive: households are unable to fully insure against idiosyncratic risks (Townsend,

1994; Udry, 1994; Fafchamps, 2011). Lack of insurance not only affects consump-

ISee Dercon (2002) for a discussion of the sources of idiosyncratic income risks and coping
strategies in rural economies.



tion but it can also have a distortionary effect on the allocation of factors of produc-
tion (Foster and Rosenzweig, 2010; Donovan, 2021). Building on this evidence, we
study the impact that limited insurance has on land markets, focusing on alloca-
tive efficiency—the potential to redistribute cultivated plots among farms thereby
increasing overall agricultural yields.

To illustrate our line of reasoning, consider a village economy with a fixed sup-
ply of land that is bought and sold (or rented in and out) in an undistorted, com-
petitive market. Under full insurance, household-farms” production decisions are
separable from their consumption, ensuring that, in equilibrium, each household
chooses how much land to cultivate to maximize expected profits. Thus, each
farmer is driven to the familiar condition of equating the expected marginal prod-
uct of land to its price, resulting in an efficient allocation of land and maximal ag-
gregate expected output. Under incomplete insurance, the “separation property”
breaks apart: households’ equilibrium land choices are not generally characterized
by an expected profit maximization condition, which prevents the equalization of
the expected marginal products of land across farms. Thus, imperfections in insur-
ance markets lead to land misallocation and lower aggregate output.

Building on the foundational works of Singh et al. (1985) and Singh et al. (1986),
we outline a general equilibrium model of risk-sharing in which household-farms
with heterogeneous productivity levels insure against idiosyncratic output shocks
by sharing the incomes they generate from operating their farms. Each household
chooses how much land to buy before the shocks are realized. We characterize
the equilibrium land allocation across a range of risk-sharing levels, ranging from
full to no insurance. Besides decreasing the expected utility of buying land, lower
insurance weakens the link between farm productivity and landholdings. Under
tull insurance, each household-farm’s equilibrium land choices maximize its ex-
pected income, making it impossible to redistribute land from one household to

another without lowering aggregate expected income. Incomplete insurance dis-



torts these choices away from expected income maximization by increasing the
weight households place on states of the world in which income is low. As a re-
sult, the equilibrium expected marginal products of land are not equalized across
households—that is, land is misallocated.

We test our model using the latest ICRISAT monthly panel data (2009-2014)
from the Indian semi-arid tropics, offering evidence linking risk-sharing to land
misallocation. First, we measure risk-sharing by estimating the elasticity of house-
hold consumption with respect to idiosyncratic income shocks for each village and
year. We find evidence of limited consumption insurance in rural India, consis-
tent with the literature: on average, 22.5% of idiosyncratic income fluctuations are
passed through to consumption. Second, we quantify land market misallocation
in each village and year using two metrics: the correlation between total land culti-
vated and household-farm physical productivity, and the variance of the marginal
product of land for each village-year pair. The former is a well-known measure of
allocative efficiency in the land market, where a higher value indicates that more
productive farms cultivate more land (Chen et al., 2023). The latter quantifies the
deviation from a benchmark scenario in which land’s marginal products are equal-
ized across farms, indicative of an efficient allocation of land to production units
(Restuccia and Rogerson, 2017). Consistent with our theory, we find a significant
positive correlation between risk-sharing and the correlation between productiv-
ity and land cultivated, and a significant negative correlation between risk-sharing
and the variance of the marginal product of land.

Finally, we leverage the structure of our model to quantify output and welfare
gains resulting from improving the functioning of consumption insurance markets
in village economies. While parsimonious, our model successfully replicates the
negative correlation between risk-sharing and land misallocation across villages
as an untargeted moment. Armed with the structural estimates, we conduct a

counterfactual analysis to explore the impact of enhancing the functioning of con-



sumption insurance markets in Indian villages. We examine how these improve-
ments affect the functioning of land markets and contribute to gains in aggregate
output and welfare. Completing insurance markets leads to output and welfare
gains of 19%, and 29%, respectively. Output per unit of land increases by 45% un-
der full insurance. This figure is comparable to other estimates in the literature:
e.g.,, Adamopoulos et al. (2022) finds that eliminating farm-specific distortions in
rural China increases agricultural TFP by 53%. We check the robustness of our
findings to incorporating farm-specific distortions, which capture the impact of
land and output market frictions that disproportionately affect high-productivity
households. We find that the aggregate output and efficiency gains from complet-
ing insurance remain substantial, even in this alternative framework, and account
for between 29% and 45% of the overall gains that can be achieved from moving
to a fully undistorted economy. Thus, our counterfactual exercise allows us to
conclude that imperfections in consumption insurance markets can be as important
as farm-specific distortions in explaining the gains from reallocating inputs across

farms in developing countries.

1.1 Related literature

Our paper belongs to the growing literature on misallocation of inputs in agricul-
ture. Gollin et al. (2002) and Restuccia et al. (2008) emphasize the role of the agri-
cultural sector in economic development and its importance in explaining cross-
country productivity and income differences. The broad theme of factor misallo-
cation and its influence on cross-country productivity differences is explored in
Restuccia and Rogerson (2008), Restuccia and Rogerson (2013), and Restuccia and
Rogerson (2017). Chen et al. (2023) find that capital and operational land size are
essentially unrelated to farm productivity in Malawi, suggesting the existence of
misallocation in the land market. Chen et al. (2022) show how land rental market

imperfections in Ethiopia lead to land misallocation, highlighting the output and



welfare gains from land certification reforms. Acampora et al. (2022) provide ex-
perimental evidence that cultivation rights decrease land misallocation in Kenya.
Adamopoulos et al. (2022) argue that within-village frictions in the capital and land
markets, linked to land institutions, disproportionately constrain productive farm-
ers in rural China.? This body of literature generally explains factor misallocation
as a consequence of generic distortions in input or output markets (i.e., “wedges”),
or institutions that constrain the choices of productive firms. Our research enriches
this narrative by introducing a potential micro-foundation for these wedges, high-
lighting the role of incomplete consumption insurance markets.

Deviations from perfect risk-sharing within village economies are well docu-
mented (see Townsend (1994), Udry (1994), and Fafchamps (2011), among others).
A body of work has provided several explanations for imperfect risk-sharing, ra-
tionalizing them as consequences of primitive frictions such as action un-verifiability
(Ligon, 1998), limited commitment (Ligon et al., 2002), hidden income (Kinnan,
2021), and localized information constraints (Ambrus et al., 2022). Donovan (2021)
examines the impact of insurance on the use of agricultural intermediates, and sug-
gests that completing financial markets allows farmers to invest in risky inputs,
leading to significant increases in labor productivity and input share. We build
on a related mechanism to argue that the lack of insurance might distort farmers’
land cultivation choices. However, our emphasis is distinct: rather than focusing
on how imperfect insurance can decrease investments in agricultural inputs, we
highlight how these imperfections result in land misallocation.

Finally, our paper contributes to the understanding of how land gets allocated
to farmers in developing countries. In the semi-arid tropics of India, land mar-
kets exhibit a rich diversity, with many farm households engaging in buying or

selling of land, or participating in the land rental market to some extent (see Ray

2Misallocation of inputs in agriculture extends beyond the markets for capital and land: for ex-
ample, Adamopoulos and Restuccia (2022) estimate substantial aggregate productivity gains from
the spatial reallocation of crop production.



(1998), Chapter 12). The salience of rental markets is emphasized in the literature
on sharecropping practices (e.g., Lamb (2003)). Our research intersects with this
topic by exploring the interaction between imperfect consumption insurance and

input allocation in the land market.

2 Model

We analyze a static economy in which households with heterogeneous productiv-
ity face idiosyncratic output shocks and can insure against these shocks by rely-
ing on a risk-sharing arrangement. Our theoretical framework is grounded in the
seminal works of Singh et al. (1985) and Singh et al. (1986), which examine the
behavior of households acting simultaneously as consumers and producers. To
simplify the exposition, we consider an environment where land is the sole fac-
tor of production.> Each household operates a farm and decides how much land
to purchase for cultivation before its output shock is realized. This choice affects
the distribution of the income generated by the farm, which is calculated as the
value of agricultural output net of the cost of acquiring land. The risk-sharing
pool allows households to share their incomes to hedge against the idiosyncratic
output shocks. We abstract from modeling borrowing or savings decisions, which
are alternative means for households to self-insure. In village economies, there is
often a restricted menu of savings instruments available (Alderman and Paxson,
1992). Moreover, in the context of rural India, households’ ability to save in either
financial or physical assets (such as livestock) appears to be heavily constrained

(Rosenzweig and Wolpin, 1993; Morten, 2019).* This is also the case in the context

3In Appendix A.2, we show that our results extend to economies that include additional inputs,
such as materials and labor. Moreover, our model can be extended to include aggregate output
shocks. Since these shocks are common across households, they can engage in risk-sharing to fully
insure against the output variation coming from idiosyncratic shocks.

4In Appendix A.3 we show that the effect of incomplete consumption insurance on factor mis-
allocation carries over to environments where agents can borrow and save through a risk-free asset.
See also Armangué-Jubert et al. (2025).



we analyze, where the majority of households are hand-to-mouth (see Subsection
3.4).

We use this model to illustrate how the degree of risk-sharing affects misallo-
cation in the land market. All proofs are at the end of the paper. Appendix A.1
discusses some of our modeling choices. In the discussion that follows, when we
refer to households, we specifically mean agricultural households that also operate
a farm.

Consider a static economy populated by a unit measure of household types in-
dexed by i. For each type i, there is a unit mass of ex-ante identical households.
Each household type i is characterized by a productivity level, 6;, and initial land
holdings, {;. Let the total quantity of land available in the economy be L = [ £;di.>0
Households have identical preferences over consumption, represented by a CRRA
utility function with a coefficient of relative risk aversion ¢. Households of the
same type, which are ex-ante identical, differ ex-post only with respect to the re-
alization of an idiosyncratic, household-specific, output shock, p, drawn from a
cumulative distribution function Q, () and support on some interval [Q, ,T)} CRy.

A household of type i produces output according to the following decreasing-

returns-to-scale production function:

Yip = pbil7,

where /; is land cultivated by a household of type i, and « € (0,1) denotes the land

share, i.e., the elasticity of agricultural yields with respect to land cultivated.” Let r

>With a fixed land supply, risk-sharing does not affect the aggregate size of land cultivated, as in
equilibrium the land price adjusts to balance supply and demand. In this way, we can theoretically
isolate the effect of risk-sharing on land misallocation.

®0Our model assumes homogeneous land quality for the sake of simplification, but the main
results of the paper would remain valid even if land parcels had heterogeneous productivity. In the
empirical analysis, we account for heterogeneous land quality based on observable characteristics.

7Since households of the same type are ex-ante identical and make land cultivation choices
before the output shocks are realized, these choices are identical for all households of the same
type. Hence, referring to ¢; as the land cultivated by a household of type i is unambiguous.



be the price of land, and let 7t;, = 0,0} —r <€,~ — Z) denote the income of a house-
hold of type i under output shock realization p. In the following, we assume that
p is high enough so that 77 is bounded away from zero for all possible land culti-
vation choices.® All the land cultivated by each household is bought and sold in a
land market before the output shocks are realized. Unlike most of the misallocation
literature, we assume this market to be competitive and frictionless. Additionally,
there are no distortions or “taxes” in the output market. These assumptions enable
us to distinguish our findings from the more conventional narrative in the misal-
location literature, which typically attributes land misallocation to land or goods

market distortions.

2.1 Full insurance vs. no sharing

To isolate the impact of insurance on land misallocation, we begin by compar-
ing an economy with complete markets, i.e., with full insurance, to one in which
households are hand-to-mouth, i.e., with no risk-sharing. Starting from the for-
mer, let ¢;(p) denote the consumption of a household of type i when the state of
the world is p, where p represents the collection of realizations of the output shock
for each household in the economy, drawn from the joint cumulative distribution
function Q, (p).” Moreover, let ¢ (p) = (¢; (p)); and £ = (¢;), represent the collec-
tions of consumptions (under state of the world p) and land cultivation choices
of all household types. To characterize an allocation of resources under complete

markets, we solve the following planner’s problem for a given collection of type-

8This assumption guarantees that household consumption is always positive, regardless of the
insurance regime, ensuring that utility remains well-defined. Alternatively, positive cash-on-hand
can be ensured by introducing an asset and allowing households to borrow and save (see Appendix
A3).

9The careful reader will observe that our notation implies identical household consumption for
households of the same type, conditional on the realization of the output shock. This assumption
holds if the equilibrium allocation of resources under full insurance can be computed as the solu-
tion to a planner’s problem with a weighted utilitarian social welfare function, using type-specific
Pareto weights. We invoke this assumption below.



specific Pareto weights (v;);:

) 1-o0

o

subject to the land availability constraint

/zidi:/’éidi:L

and the feasibility constraint

| [ei0)dQu(p)di= [ [ yipdQy (o)

Under full insurance, households can completely eliminate the effects of id-
iosyncratic output shocks. Each household consumes a fixed fraction of the con-
stant aggregate output, where this fraction is proportional to its Pareto weight.!’
An optimal consumption allocation satisfies the well-known Borch rule, which
states that the ratio of any two households’ marginal utilities of consumption is

constant across all states of the world.

Claim 1. Under full insurance, each household consumes a constant fraction of aggregate

output, with the fraction being proportional to its Pareto weight.

An optimal consumption allocation under full insurance ensures that each house-
hold’s consumption remains constant across all states of the world. Consequently,
the planner can disregard how land cultivation decisions affect the distribution of
consumption: each household is allocated an amount of land such its expected
marginal product equals its shadow price. In a decentralized complete-market

economy, this outcome would result from the separation theorem, which states

19Pareto weights are type-specific, meaning that full risk-sharing does not necessarily result in
an egalitarian allocation of consumption. In particular, households with larger land endowments
or higher productivity may systematically consume more than those with smaller endowments or
lower productivity.

10



that each household-farm makes production decisions to maximize its expected
income. (Bardhan and Udry, 1999). Given that the expected marginal products of
land are equalized across households, an allocation of land under full insurance

features no ex-ante misallocation and maximizes aggregate expected output.

Claim 2. Under full insurance, the expected marginal products of land are equalized across

households and aggregate expected output is maximized.

Next, we consider the allocation of land that obtains in a competitive equilib-
rium under no sharing. When risk-sharing is absent, the problem of a household

of type i reads as follows:

i 1-0

1—-0

subject to the budget constraint
ci (p) = yip —r'™ (fi —E) ,

where M denotes the equilibrium price of land under no sharing. A competitive
equilibrium for this economy is a plan for consumption, (¢;(p));, an allocation of

land holdings (¥;); and a price of land M such that:

e land holding is chosen optimally, i.e.,

oM, T 1-0
(o= 1<_£lg ) dQ(p), Vi

;€ argmgax/

1

o Jand market clears, i.e.,

/ 0idi = / fdi=1.

Without risk-sharing, household’s consumption and its marginal utility depend on

11



the realization of its output shock. This dependency distorts households’ land cul-
tivation decisions, implying that an equilibrium land allocation does not maximize
expected income for each household. In particular, because households internalize
how land cultivation choices impact the distribution of consumption across differ-
ent states of the world, the expected marginal product of land they cultivate will
not equate its market price. When this is the case, there exists land misallocation—

redistributing land across households can increase aggregate expected output.
Claim 3. Under no sharing, there is ex-ante land misallocation.

The key takeaway from Claim 3 is that distortions in consumption insurance mar-
kets (i.e., lack of insurance) alone are sufficient to cause ex-ante misallocation in the

land market.

2.2 Partial insurance

More broadly, we can investigate the impact of risk-sharing on land misallocation
for any degree of risk-sharing. Specifically, we explore the relationship between
the elasticity of consumption with respect to own income—used as a measure of
lack of insurance—and misallocation in the land market, as measured by the ex-
tent to which the marginal returns of land are distorted away from its price across
household types and states of the world.

We consider an environment with partial insurance, an intermediate situation
between the full insurance and no sharing scenarios discussed in the previous sec-
tion. To model partial insurance, we define the following consumption function

for a household i:
1
v _
¢i(p) = exp{ Blog (mjy) + (1 — p)log ﬁ//n]deP p)dj | -
vidj

In this formulation, B represents the elasticity of consumption with respect to indi-

12



vidual income, while 1 — B is the elasticity of consumption with respect to aggre-
gate income. Under full insurance, B = 0; under no sharing, B = 1. Any p value be-
tween these extremes represents varying degrees of partial insurance, with higher
pB values indicating worse insurance. Beyond providing a flexible way to model the
relationship between household consumption and income, the function in Equa-
tion (1) maps into the standard regression equation commonly estimated in the
literature to test for efficient risk sharing in village economies (Townsend, 1994;
Chiappori et al., 2014). The following theorem shows that misallocation in the

land market decreases with the degree of insurance.

Theorem 1. Land misallocation increases in the elasticity of consumption with respect to

own income, .

In the full insurance benchmark, where each household’s consumption is con-
stant across all states of the world, the expected marginal products of land are
equalized across households. As we deviate from this benchmark, the distribution
of each households” marginal utility of consumption increasingly reflects the im-
pact of its realized output shocks. This is isomorphic to imposing distortions that
affect the marginal return on land in each state. Thus, as households” marginal
utilities become increasingly tied to their realized output shocks, land allocation
decisions deviate further from the full insurance benchmark.

Specifically, two forces operate in the model. First, when risk sharing is not
perfect, land choices aim to increase expected utility subject to the downside risk
of renting before uncertainty is realized. This makes high-productivity farmers—
those whose expected utility is more sensitive to idiosyncratic shocks—to utilize
relatively less land in order to avoid losses from unfavorable realizations of the
shocks. A second force operates in general equilibrium: with land being in fixed
supply, the reduced demand for land from high-productivity farmers in a low-risk
sharing scenario lowers the rental price of land relative to a scenario with higher

risk sharing. This, in turn, incentivizes low-productivity farmers—those whose

13



expected utility is less sensitive to idiosyncratic shocks, to utilize relatively more

land.

2.3 Robustness of theoretical results

The model in the previous section focuses on a setting where land is the only factor
of production. This assumption is made purely for conceptual clarity: in Appendix
A.2, we show that all of our results extend to a model that includes additional
factors of production, such as materials and labor. Here, the key point is that
as long as some factors of production are chosen before the realization of output
shocks, incomplete consumption insurance distorts their allocation away from one
that maximizes aggregate expected output. This result holds even if other inputs,
such as labor, can be adjusted ex post. Moreover, insurance market incomplete-
ness alone is sufficient to generate factor misallocation, even if all factor markets
operate without frictions. Finally, as shown in Appendix A.3, the effect of incom-
plete consumption insurance on factor misallocation carries over to environments

where households can borrow and save through a single risk-free asset.

3 Data

3.1 Background

We use household panel data collected under the Village Dynamics in South Asia
(VDSA) project by the International Crop Research Institute for the Indian Semi-
Arid Tropics (ICRISAT). The data are derived from detailed survey interviews con-
ducted between 2009 and 2014 in 18 villages in the Indian semi-arid tropics. Some
components of the survey were administered monthly and others annually. Impor-

tantly, the data allow us to construct monthly measures of consumption and income

14



for households in different villages.!! This feature makes it possible to estimate
the level of risk-sharing specific to each village and year. We exploit this possibil-
ity later in the section, where we relate the level of risk-sharing to the degree of
land misallocation across villages and years. The data include information from
40 randomly selected households in each village, stratified by landholding size,
and including 10 landless laborers, 10 small farmers, 10 medium farmers, and 10
large farmers. This classification is based on operational landholdings, defined as
land owned and leased in, minus land leased out.!? The data also provide detailed
information on the quantity and value of all inputs and outputs in farm activi-
ties, as well as expenditures and incomes. We refer to Townsend (1994), Mazzocco
and Saini (2012), and Morten (2019) for more detailed discussions of the data.'

Appendix B describes the variables used in the analysis.

3.2 Land distribution

Central to our analysis is how land is distributed among farmers. Table 1 presents
the distribution of cultivated land (in hectares) across farms in our data and com-
pares it to the distributions in Malawi, Belgium, and the United States, as reported

in the 1990 World Census of Agriculture (Adamopoulos and Restuccia, 2014).*

11 As in Section 2, the term ‘household’ refers to an agricultural household operating a farm.

12Because landless laborers, by definition, report zero land usage, we exclude them from our
analysis.

13As pointed out by Mazzocco and Saini (2012), it can be difficult to compare some of the in-
formation contained in the data (e.g., expenditures) across households and years, since (1) the fre-
quency of the interviews varies, and (2) the interview dates differ across respondents. Some recall
periods can be longer than a month (e.g., a household in Aurepalle reported the amount spent on
rice from July 1 to November 8, 2009). Hence, it is impossible to determine how the information
provided is distributed over the months that make up recall periods longer than a month. For-
tunately, from 2010 onward, the survey gives information on the month to which every piece of
information refers. Therefore, we drop the observations that pertain to the year 2009.

4In the World Census of Agriculture, “[a]n agricultural holding is an economic unit of agri-
cultural production under single management comprising all livestock kept and all land used
wholly or partly for agricultural production purposes, without regard to title, legal form or size”
(https://www.fao.org/4/x0187¢/x0187e01.htm). Given this definition, when comparing the
ICRISAT data to the World Census of Agriculture, it is more appropriate to consider farm size

15
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Table 1: Farm size distributions (% of farms by size)

2009-2014 ICRISAT 1990 World Census of Agriculture

Farm size (hectares) India Malawi Belgium United States
<1 17.93 77.7 14.6 0.0

1-2 23.88 17.3 8.5 0.0

2-5 38.26 5.0 15.5 10.6
5-10 13.45 0.0 14.8 7.5

>10 6.49 0.0 46.6 81.9
Average 3.82 0.7 16.1 187.0

Notes: This table presents the percentage distribution of farm sizes in hectares for India, Malawi,

Belgium, and the United States. Data for India are refer to the 2009-2014 ICRISAT panel data.
The sample refers to Indian farms with positive amounts of cultivated land. Data for Malawi,
Belgium, and the United States are from the 1990 World Census of Agriculture, as documented
in Adamopoulos and Restuccia (2014).

Compared to Belgium and the United States, the distribution of cultivated land
in village India is more left-skewed. In our sample, around 80% of farms cultivate
less than 5 hectares of land, and nearly 95% of the farmlands are under 10 hectares.
The average land size in our sample is 3.8 hectares, against a value of 0.7 hectares
for Malawian farms, and much larger values of 16.1 and 187.0 hectares for Belgian

and American farms, respectively.

3.3 Farmers’ physical productivity

For our analysis, it is essential to accurately estimate each household-farm’s phys-
ical productivity, also known as TFP-Q. We later use these estimates to infer land
misallocation. Measuring productivity is a fundamental step in virtually all as-
sessments of factor misallocation, whether direct or indirect (Restuccia and Roger-
son, 2017). In turn, nearly all productivity measurements require imposing some

structure—typically by specifying a production function. To assess household-

in terms of cultivated land rather than owned area. We also maintain that cultivated area is inher-
ently a more accurate measure of farm size because it avoids measurement errors arising from not
including plots that are cultivated but not owned, including plots that are owned but not cultivated.
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farm productivity, we estimate the agricultural production function outlined in
Appendix A.2, which incorporates materials and labor alongside land as factors of
production. Specifically, consider the following agricultural production function:
Yie = Auelipickle hi €2, @)
where y;; denotes the physical quantity of output (measured in kilograms) pro-
duced by household i in year 7; Ay; captures factors common to village v and
year T; k; is total value of materials; h;; denotes total hours of family labor ded-
icated to farming activities; ¢;; represents total land cultivated, adjusted for dif-
ferences in quality.!> We decompose the village-level aggregate productivity term
as Ayp = efretrainor where i capture common year-specific factors and rain,; de-

notes the amount of rain (in millimeters) in village v and year 7.'® We assume

that

91' = €yi, (3)

155pecifically, we assume that /;; = g;ra;r, where a;; is the area cultivated by household i in year
T,and

logq;r = é1depth;_+ drslope;, + dsfertility; + dsdegradation,,

where depth, , slope;_, fertility, , and degradation, represent measures of the average soil depth,
slope, fertility, and degree of degradation, respectively, for the plots cultivated by household i in
year T (see Appendix B for additional details on the construction of these variables). In Appendix
C.4, we show that the findings in this section are robust to an alternative definition of land quality.
Although land quality is notoriously difficult to measure, and any attempt to relate it to observable
or unobservable characteristics is prone to specification error, it remains an unavoidable component
in estimating the agricultural production functions.

16Rainfall shocks are major sources of transitory variation in agricultural output in semi-arid
tropical India, where the vast majority of land plots are rain-fed. To measure them, we use daily
recordings of rainfall levels at the nearest weather station to each village and derive the total annual
rainfall for each village by summing these daily measurements over the year.
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where y; represents permanent unobserved heterogeneity specific to household i.

As for the output shock, p;r, we assume that
Pit = eeiT/ (4)

where €;; is an unobserved error term. Our approach involves treating the output
shock, p;r, as a residual after accounting for farm-specific fixed effects and other
variation in output originating from observable sources. After taking logs and re-

arranging terms, Equation (2) becomes
log (yir) = a*log (kir) + a"log (hir) + a'log (£ir) + i + pix + Orainge + i (5)

Finally, we assume €;; to be randomly distributed and estimate Equation (5) using

OLS.

Table 2: TFP-Q dispersion across farms and manufacturing firms

Farms Manufacturing firms
India Malawi US India China US
2010-2014 2010-2011 1990 1987 1998 1977

St.dev.,, log 1.08 1.18 0.80 116 1.06 0.85
75-25 log ratio 1.02 1.39 1.97 1.55 141 122
90-10 log ratio 2.50 2.89 2.50 277 272 222

Notes: The first column reports statistics of the estimated farm productivity using the
2009-2014 ICRISAT panel data for the Indian semi-arid tropics. The second column re-
ports statistics of farm productivity in Malawi from Chen et al. (2023). The third col-
umn reports statistics of farm productivity in the United States from the calibrated dis-
tribution in Adamopoulos and Restuccia (2014) to U.S. farm-size data. The third and
fourth columns report statistics for the productivity of manufacturing plants in Hsieh
and Klenow (2009). St.dev. refers to the standard deviation of log productivity; 75-25 is
the log difference between the 75 and 25 percentiles; 90-10 is the log difference between
the 90 and 10 percentiles.

In Table 2, we report the dispersion of estimated farm productivity, log 0;, among

Indian household farms, and compare it to the same dispersion among farms in
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Malawi (Chen et al., 2023) and the US (Adamopoulos and Restuccia, 2014), as well
as to the dispersion of TFP-Q among manufacturing plants in both countries, as
reported by Hsieh and Klenow (2009). There is substantial dispersion in TFP-Q
among Indian farms: the standard deviation of log productivity (1.08) is compa-
rable to that of farms in Malawi (1.18) and much larger than that of farms in the
US (0.80). Moreover, variation in TFP-Q explains differences in agricultural output

across Indian farms (see Table C1 in Appendix C.1).

3.4 Households’ consumption and income

Finally, for our analysis, we need information on consumption and income across
households and years. Table 3 reports the distributions of monthly real consump-
tion and income across households and years in our sample. Both variables are

deflated using the national CPI and expressed in 1975 Indian rupees.!”

Table 3: Income and consumption across households and years

Observations Average Median St.dev. Min Max
1) () 3) 4) ) (6)

Household size 46,369 5.00 5 2.31 1 24
Age of household head 46,369 41.19 539 9.58 22 82
Income 46,369 702.61 395.22 28154 0 3752089
Income, p.c. 46,369 176.00 97434 716.89 0  65826.13
Consumption 46,369 495.98 373.08 976.06 249 59947.02
Consumption, p.c. 46,369 123.35 92980 279.71 7.68 25477.59
Savings 45,781 1825.5 393.61 37065 0 31857.0
Savings, p.c. 45,781 482.97 102.34 1070.1 0 16196.6
Hand-to-mouth households 45,781 0.5057 1 0.500 0 1

Notes: Nominal variables are expressed in 1975 rupees. Per-capita income and consumption expressed in adult-
equivalent terms, using the weights proposed in Townsend (1994). Hand-to-mouth households are defined as
those with a stock of savings lower than one month of income. Source: VDSA survey (ICRISAT) and own
calculations.

Households in the ICRISAT villages are poor, with an average real per capita

income of 176 rupees per month, equivalent to 101 US dollars in 2016 terms, or

71n 1975, 8 Indian rupees were worth about 1 US dollar, which is about 4.60 dollars in 2016
(Bold and Broer, 2021).

19



about 3.4 US dollars per day. Per capita real consumption averages 70% of real
monthly income, amounting to 123 rupees (71 US dollars in 2016 terms). Per capita
consumption is also much less dispersed than per capita income, whose standard
deviation is twice as large. Finally, per capita savings are small: the median value
is 102 rupees (59 US dollars in 2016 terms), and more than 50% of households in
the sample are hand-to-mouth—that is, their overall stock of savings is less than

one month’s worth of income.

4 Risk-sharing and misallocation in Indian villages

4.1 Land misallocation

We now present direct evidence of land misallocation among households in rural
India. To do so, we employ data on operational (cultivated) landholdings, ¢;,
together with our estimates of physical productivity (TFP-Q), ;.

Figure 1 displays the allocation of operational lands across farmers. Specifically,
panel A scatters the land operated by each farm against the estimated farm-level
TFP-Q. Both variables are expressed in logs. Contrary to the efficient allocation,
which predicts a tight relation between land size and TFP-Q, the correlation be-
tween the operational land size and farm TFP-Q is very low and equal to 0.29,
i.e., low- (high-) productivity farmers operate relatively more (less) land relative
to the efficient benchmark. As a result, the estimated marginal product of land is
not equalized across farmers (Panel B), and the standard deviation of the log MPL
amounts to 1.12. These findings are strong evidence of land misallocation across
farmers in India.

We replicate the same analysis at a more disaggregated level. That is, we con-

struct the unconditional correlation between the log of operational land size and
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Figure 1: Land misallocation among Indian farmers

(A) Land size vs TPF-Q (B) (log) MPL

Land holdings, log

0 2 - 0
Estimated TFPQ, log Estimated TFPQ, log

|° Observed allocation ~ ————- Efficient allocation | ® Observed allocation ~ ————- Efficient

Source: VDSA survey (ICRISAT) and own calculations.

the log of farm productivity, i.e.,
COIT.;r [logEiT,log@\i} .
and the dispersion in the marginal product of land, i.e.,
st.dev.,r [logMPL;.],

separately for every village v and year T in the sample. As highlighted in Figure 1,
low correlations and high dispersion of MPL are both suggestive of land misallo-
cation.

There is a large variation in allocative efficiency of land across villages and
years. Panel A in Figure 2 displays the distribution of estimated correlations. They
range from negative values in some village-year pairs to nearly 1 in others. That
is, while in certain village-year pairs more productive household-farms cultivate,
on average, less land than less productive households, in other village-year pairs,
there is an almost one-to-one relationship between operational landholdings and

physical productivity, indicating minimal land misallocation. Panel B in Figure 2
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reports the distribution of estimated marginal product dispersions across villages
and years. Similarly to Panel A, the dispersion is small in certain village-year pairs,

indicating little misallocation, while much greater in others.
Figure 2: Land misallocation in each village

(A) Land size-TPF-Q) correlation (B) Dispersion in the (log) MPL

— . o

mean = 0.696
SD=0.232

mean = 0.461
SD=0.278

il

T T T T T T T T T T T T
-4 -2 0 2 4 6 8 1 0 5 1 15
Land Size-TFPQ correlation MPL (log) dispersion

Notes: This figure reports the distribution of misallocation measures, corr., |log¥;:,log é\l} (panel

A) and st.dev.,; [logMPL;.] (panel B), estimated for each village v and year 7. The red dashed line
refers to the average of the distribution. Source: VDSA survey (ICRISAT) and own calculations.
What accounts for the variation in land misallocation across villages and years?
The theory developed in Section 2 suggests that misallocation in the land market
is negatively correlated with the ability of households to share idiosyncratic risks.
In what follows, we present evidence of imperfect risk-sharing among households,
and show that land misallocation negatively correlate with the ability to share risks

within villages.

4.2 Risk-sharing

Is is commonly acknowledged that risk-sharing within villages in developing coun-
tries tends to be incomplete. This holds true for the ICRISAT villages as well. To
see this, we consider how the per-capita consumption for household i in month
t, cit, comoves with its per-capita income, 71;;. We start by outlining the construc-

tion of these two variables, which are critical to our measure of risk-sharing: the
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elasticity of consumption with respect to idiosyncratic income shocks. Rather than
providing a direct measure of household consumption, the ICRISAT data record
detailed individual expenditures on food and non-food items, as well as the mone-
tary value of home-produced commodities that are consumed. This granular level
of detail for each consumption item is one of the key advantages of this dataset,
as it allows us to compile a comprehensive measure of household consumption by
aggregating these recorded values at the household-month level. Notice that, as
a result, our measures of household consumption are never imputed from house-
hold income, not even for the poorest households. This feature stands in contrast
to many household surveys, which often rely on income-based measures of living
standards (Deaton and Zaidi, 2002). To derive a measure of monthly household in-
come, we adopt the budget-constraint approach of Mazzocco and Saini (2012). In
particular, full income is calculated as total expenditure minus resources borrowed
from various sources, plus resources saved in different accounts or lent to others,
plus transfers given out, minus transfers received, plus taxes, and minus subsidies.
To convert monthly household consumption and income into per-capita terms, we
adjust them using the age-sex index proposed by Townsend (1994).!® Then, we

consider the following model:
logcis = Blog i + Xi + Xot + €it- (6)

In Equation (6), logc;; and log 7t;; denote the log per-capita consumption and log
per-capita income, respectively, for household i in month ¢; x; are household fixed
effects; and Y.+ represents village-month fixed effects that capture the average re-
sources available to each village in each month. We can interpret 1 — j as the level
of risk-sharing in village economies, where a higher p means a higher elasticity

of consumption with respect to idiosyncratic income shocks (indicating a lower

18See Appendix B for additional details on the construction of the household consumption and
income variables.
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degree of risk-sharing). Under perfect risk-sharing, household income should not
affect household consumption, conditional on total resources at the village-month
level.

Full risk-sharing is rejected. On average, 22.5% of idiosyncratic income fluc-
tuations are passed through to consumption (Table C2 in Appendix C.2). These
values are aligned with what the literature has already documented for Indian
villages using alternative empirical specifications (Townsend, 1994; Ravallion and
Chaudhuri, 1997; Morduch, 2005; Bold and Broer, 2021).19

The average elasticity of consumption with respect to idiosyncratic income
shocks in equation (6) hides considerable variation in risk-sharing across villages
and years. To uncover this variation, we estimate the degree of risk-sharing across
households within each village separately. More specifically, we estimate an elas-
ticity of consumption with respect to income, By, independently for each village
v and year 7.0 A high estimate of B, indicates that within village v during year T,
the response of household consumption to household idiosyncratic income shocks
was high—i.e., risk-sharing was low in village v and year 7 ().

Figure 3 plots the distribution of the estimated elasticities of consumption with
respect to idiosyncratic income shocks, Bor, for each village-year pair. The aver-
age estimated Bvr across villages and years is 0.223, indicating that, on average, a
1% idiosyncratic increase in income results in a 0.223% increase in consumption.
As shown in the figure, there is considerable variation in risk-sharing across vil-
lages and years, with our estimates ranging from full insurance (Bvr ~ 0) to several

others showing very high elasticities of consumption with respect to idiosyncratic

9The elasticities are comparable between households with and without savings, suggesting the
inability of households to smooth consumption through financial assets.

20For each village v and year 7, we estimate

logcit = Bor(r) log it + Xi + Xt + €ir,

where index i denotes households within village v, while index t corresponds to the months within
year 7 (t), where T (t) specifies the year associated with month ¢; e.g., if t corresponds to October of
the year 2010, then 7 () = 2010.
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Figure 3: Estimated degrees of risk-sharing in each village

mean =0.223
SD=0.136

o d
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Notes: This figure reports the distribution of risk-sharing parameters, B,r, estimated for each vil-
lage v and year 7. The red dashed line refers to the average of the distribution. Source: VDSA
survey (ICRISAT) and own calculations.

income shocks (,Bm > 0.6).

4.3 Linking land misallocation to risk-sharing

We are now ready to test whether a higher degree of risk-sharing within villages
and years is associated with better allocative efficiency in the land market. To do
so, we relate our two measures of misallocation in each village and year, obtained
in Section 4.1 and denoted by wy, to our estimates of the elasticities of consump-
tion with respect to idiosyncratic income shocks at the village-year level, Bzm ob-

tained in Section 4.2. In particular, we estimate the following equation:

Wyt = ’)’,B\ZJT + Qo+ P+ Qo X T+ Gor, (7)
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Figure 4: Risk-sharing and land misallocation

(A) Land size-TPF-Q corr. vs. risk-sharing  (B) Dispersion in the MPL vs. risk-sharing

Land Size-TFPQ correlation
MPL (log) dispersion

T T T T T T T T T T T T T T T T
0 A 2 3 4 5 6 7 0 A 2 3 4 5 6 N
Estimated risk sharing, B Estimated risk sharing,

Notes: Panel A scatters the correlation between log farm size and log TFP-Q, corr.,¢ {log Uiz, log 5,}
against the degree of risk-sharing, Byr across villages and years. Panel B scatters the standard de-

viation of the log marginal product of land, st.dev.,r [logMPL;;] against the degree of risk-sharing,
Bor across villages and years. In both panels, each dot refers to the average village-year pair in a
given 2 percent bin of the estimated risk-sharing. Source: VDSA survey (ICRISAT) and own calcu-
lations.

where ¢, and ¢ are village and year fixed effects, ¢, x T are village-specific linear
year trends, and g, are random disturbances.

Figure 4 binscatters this relation. For each dot, the x-axis shows the average
estimated risk-sharing for village-year pairs within a given percentile bin, while
the y-axis gives the average measure of land misallocation. As we move from
village-year pairs with no risk-sharing (vi = 1) to pairs with full insurance (BUT =
0), land misallocation decreases: the correlation between TFP-Q and landholdings
rises from 0.3 to around 0.7 (panel A), while the dispersion of MPL drops from 0.8
to approximately 0.4 (panel B).

Table 4 reports the estimation outcomes for different specifications of Equation
(7). There is a negative and significant correlation between land misallocation and
the degree of risk-sharing. For example, column (4) indicates that moving from
village-year pairs with full insurance (B,r = 0) to no risk-sharing (Byr = 1) reduces
the correlation between farm size and productivity by approximately 0.229 points,

after controlling for village fixed effects, year fixed effects, and a village-specific
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Table 4: Risk-sharing and land misallocation

COIT.pr [logéh,log@} st.dev.,r logMPL,;]
1) (2 3 4) ®) (6) 7) (8
Bm -0.648***  -0.675*** -0.163** -0.229*** 0.732*%**  (0.749*** (.161*** (.192***
(0.226) (0.228)  (0.080)  (0.109) (0.178)  (0.245) (0.063) (0.076)
Observations 90 90 90 90 90 90 90 90
R? 0.106 0.118 0.897 0.942 0.218 0.223 0.902 0.948
Year FE Ve v v v v v
Village FE v v N v
Village time trends v v

Notes: The unit of analysis across all columns is a village-year pair. The first four columns present the results of regressing
COIT.pr {logﬁir,log @,] on the estimated village-and-year-specific consumption elasticities to idiosyncratic income shocks, BUT.

The following four columns show the results of regressing st.dev.,r logMPL;;| on vi- Standard errors in parentheses are
computed using village-level clustered bootstrap (5,000 replications) following the procedure in Cameron et al. (2008).

linear time trend. In terms of magnitudes, the effect is equal to 0.82 times the stan-
dard deviation of the correlation between land size and farm productivity across
villages and years (Figure 2, Panel A). The dispersion of the marginal product of
land is negatively correlated with the degree of risk-sharing. The estimates in col-
umn (8) suggest that moving from full insurance to no risk-sharing is associated
with an increase of approximately 0.192 points in the standard deviation of the log
of MPL,,. Similarly to before, this increase represents 0.83 times the standard de-
viation in the dispersion of the marginal product of land across villages and years
(Figure 2, Panel B).%!

Our results show a clear negative correlation between the degree of risk-sharing
in village economies and the misallocation in the land markets of those villages.
How much would land efficiency and aggregate output increase with a better risk-

sharing arrangement? In the following section, we leverage the structure of our

ZIn Appendix C.3, we present estimates from an IV strategy that exploits variation in caste
diversity across villages, which may help address potential endogeneity in the relationship be-
tween risk-sharing and misallocation. Identifying exogenous variation in risk-sharing across vil-
lage economies is an extremely challenging task. Even randomized controlled trials of microfinance
can generate global spillover effects by altering social networks, which play a crucial role in infor-
mal insurance and credit (Banerjee et al., 2024). Therefore, while our IV results are not intended
to provide a definitive causal estimate of the impact of risk-sharing on land misallocation, it is
reassuring they align with the predictions of our model.
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model to address this question in detail.

5 The gains from full insurance

In this section, we employ our theoretical model to quantify the aggregate gains
from completing village consumption insurance markets. To proceed, we need
to specify values for the model parameters, such as the land share «, the aggre-
gate (fixed) supply of land L, the level of risk-sharing 1 — B, and the coefficient of
relative risk aversion ¢. In addition, we also need to define the distributions of
household productivity, 8;, and the output shocks, p. In the following, we describe
what we do in detail.

Table 5: Parameters calibrated externally

Parameters Description Value Source
o Land share 0.193 Equation (5)
L Aggregate land supply (hectares) 3.819 Tablel
B Elasticity of consumption with respect to idiosyncratic income shocks 0.223 Equation (6)

Notes: This table reports the parameters that are externally calibrated without solving the model and their sources.

We fit the model to the average village in our data. Some parameters are exter-
nally calibrated without solving the model. These parameters are listed in Table
5. We set the output elasticity of land, «, to 0.193, based on estimates obtained
from Equation (5). The aggregate land supply, L, is set to the average farm size of
3.819 hectares (Table 1). The elasticity of consumption with respect to idiosyncratic
income shocks, B, is set to 0.223, which is the estimate obtained from Equation
(6). The estimates from Equation (5) are used construct household-farms” physi-
cal productivity, 8;, and output shocks, p;. The distributions of these parameters
are calibrated to match the empirical frequencies observed across households and

years.?

22To solve the model, we discretize the possible values of physical productivity and output
shocks into 100 and 50 bins, respectively, each corresponding to different percentiles within their
distributions.
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Table 6: Estimated risk aversion

Parameters Description Value Target Data Model

o Relative risk aversion 1.600 corr. [logfi.f,log (/91 0461 0.469

Notes: This table reports the value of the coefficient of relative risk aversion that is estimated to
match the average correlation between log farm size and log productivity.

We are left with only one parameter, the coefficient of relative risk aversion, o,
which is estimated using the simulated method of moments (SMM). In particu-
lar, we choose ¢ to match the average correlation between log farm size and log

productivity, which we denote by

Y o COIT.pr [log iz, log @}
VT ’

COIT. [logﬁif,logé\i} =

where V and 7 denote the numbers of villages and years in the data. Table 6
reports the point estimate and the model fit. We obtain a value of ¢ = 1.60, indicat-
ing moderate risk aversion. This estimate aligns with the findings in Holden and
Quiggin (2017), who estimate a coefficient of relative risk aversion of 1.73 (Table
A.4) for a sample of farmers in Malawi.??

To validate the model, we assess its ability to replicate the observed correlation
between the estimated levels of risk-sharing, Bm, and the correlation of farm size
and productivity across villages and years, corr.,; (logEiT, log @) To accomplish
this, we solve replicas of our model that differ only in the values of B. Figure 5 plots
the equilibrium correlation between log farm size and log productivity for differ-
ent levels of risk-sharing (blue dots) against the corresponding empirical estimates

from Figure 4A (red dots). Our model can replicate the negative correlation be-

tween risk-sharing and land misallocation observed in the data, even though this

23 As shown in Equation (1), solving the model requires us to take a stance on the households’
Pareto weights, (v;);. In all the exercises performed in this section, we assume that v; = 1, for each
i
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Figure 5: Risk-sharing and misallocation: Model vs. data
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Source: VDSA survey (ICRISAT) and own calculations.

correlation was not explicitly targeted in the model’s estimation. This suggests that
the model effectively captures the relationship between land misallocation and the

degree of consumption insurance across villages and years.

5.1 Counterfactual exercise

How would households’ land cultivation choices differ if village insurance mar-
kets were complete? To what extent does full insurance enhance allocative effi-
ciency in the land market? We answer these questions with a counterfactual ex-
ercise where we improve the functioning of consumption insurance markets in
village economies. Completing the market for insurance against shocks to agri-
cultural output is a natural benchmark of “financial deepening” (see Townsend

and Ueda (2006) on this concept). Specifically, we contrast our baseline model to a
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counterfactual scenario in which B = 0, corresponding to perfect risk-sharing. We
keep all the other parameters at their baseline values, including the overall land
supply, and assume identical Pareto weights across households, ensuring that, in
the full insurance equilibrium, each household consumes the economy’s average
income.?*

Figure 6 plots the amount of land cultivated (Panel A), farm output (Panel B),
household income (Panel C), and household expected utility (Panel D) on the y-
axes against (log) farm productivity (on the x-axis) for both the baseline (blue line)
and full insurance economies (black line). As we move from partial to full risk-
sharing, land reallocates from low- to high-productivity farms (Panel A). Under
full insurance, the most productive household cultivates more than four times as
much land compared to what it does under partial insurance, increasing its culti-
vated area from just over 5 hectares to nearly 35 hectares. Conversely, those with
low productivity cultivate less land under full insurance than under partial insur-
ance. Improved risk-sharing decreases land misallocation, leads to greater output
dispersion across farms (Panel B), and simultaneously reduces the dispersion in
household income (Panel C). Panel D shows that most households, particularly
those with low productivity, experience substantial welfare gains under full shar-
ing compared to partial insurance. Conversely, the most productive households
face welfare losses when participating in the full sharing arrangement rather than
the partial insurance scheme.

Table 7 offers a further comparative analysis of baseline and counterfactual

economies, evaluated across various dimensions. With full insurance, land mis-

241f we conceptualize the full insurance equilibrium as the solution to a planner’s problem, as
outlined in Section 2, we can imagine the planner having complete information and the ability to
maximally punish households that opt out of the risk-sharing arrangement. As a result, she can
implement this solution without facing incentive compatibility or participation constraints. The
egalitarian allocation, in which each household consumes a constant fraction of aggregate income,
is generally not implementable as a decentralized solution in a complete markets economy. Instead,
in such a solution, households of the same type (i.e., those who are ex-ante identical) consume the
same amount in expectation.
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Figure 6: Partial (baseline) vs. full risk-sharing
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Source: VDSA survey (ICRISAT) and own calculations.

allocation is sizably reduced: the correlation between log farm size productivity
and log productivity is nearly twice as large the one in the baseline. Under full
insurance, the distribution of cultivated land becomes significantly more unequal:
the share of total available land allocated to firms at the top 1% of the productivity
distribution increases by approximately six times, while the share going to the top
10% of farms increases by approximately four times. The variance in the distribu-
tion of (log) cultivated land increases approximately ninefold. Improved insurance

leads to an increase in aggregate efficiency of 41.5%, to output gains of 18.6%, while
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Table 7: Counterfactual exercise

Baseline Counterfactual
(partial insurance) (full risk-sharing)

1) (2)

B 0.223 0

Share of land, top 1% productive farms 0.017 0.086
Share of land, top 10% productive farms 0.155 0.627
Land dispersion (st.dev.[log¢;.]) 0.399 2.589
Aggregate efficiency (output per hectare) 1 1.415
Aggregate output 1 1.186
Aggregate welfare 1 1.286

Source: VDSA survey (ICRISAT) and own calculations.

the overall welfare gains, measured in consumption-equivalent terms, are equal to
28.6%.

Efficiency and output gains from full risk sharing are also robust to incorpo-
rating farm-specific distortions in the model. Specifically, in Appendix D.1 we ex-
tend our model by introducing farm-specific distortions taking the form of output
wedges that are correlated to farm productivity. We then conduct the same com-
parative analysis as for the baseline model. We find that the efficiency and output
gains from achieving perfect risk-sharing remain large and are equal to 39.3% and
18.3%, respectively, accounting for between 30% and 45% of the overall gains that
can be achieved from moving to a fully undistorted economy.?’

These figures are comparable to those quantifying the gains from eliminating
distortions in the land markets (e.g., Adamopoulos et al. (2022)). Thus, our coun-
terfactual analysis suggests that inefficiencies in consumption insurance markets
may be as significant as land market distortions in explaining the potential gains
from improving land allocation across households. This result is confirmed by the

increase in output per unit of land of 41.51% with improved risk-sharing.

ZResults are also robust to an alternative calibration of the land elasticity, «. See Appendix D.2.
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6 Conclusions

This paper bridges the gap between the literatures on risk-sharing and resource
misallocation. We begin with two key observations. First, insurance markets in
rural villages are incomplete, leading household income shocks to significantly
affect consumption. Second, there is substantial misallocation of factors of pro-
duction among farmers, resulting in reduced agricultural productivity in village
economies. We argue that these two phenomena are deeply interconnected. Specif-
ically, we see the limited functioning of consumption insurance markets as a key
factor contributing to land misallocation in rural villages.

We explore how imperfections in insurance markets affect land misallocation.
Our theoretical results show that incomplete consumption insurance can increase
land misallocation, even when land markets operate without distortions. Empir-
ically, we quantify the losses attributable to limited risk-sharing using the latest
ICRISAT data from rural India. Our findings suggest that fully developed insur-
ance markets could significantly enhance the allocation of land, resulting in out-
put and welfare gains of 19% and 29%, respectively. Thus, improving risk-sharing
within an otherwise undistorted economy can yield gains comparable in magni-

tude to those achieved by removing distortions in factor or output markets.
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Proofs

Proof of Claim 1. The first-order conditions for ¢; (p) read as follows:

vi(ci(p)) " —A=0,

or, equivalently,
_1 1
ci(p) =A"7vf, (8)

where A is the Lagrange multiplier attached to the feasibility constraint. Thus, each
farmer’s consumption is constant across states of the world p. Integrating the last

equation over all farmer types j and states of the world p, we get that

//q )dQ, (p)dj = //( )dg,)m A /fm

Combine this equation with the feasibility constraint to obtain

ffl/JPde p)dj
fV”dJ

Ao —

Substituting this expression back into Equation (8), we get

l
Ci //y]PdQP
Ud]

Proof of Claim 2. The first-order conditions for ¢; read as follows:

L+A/amdg, ~0, 9)

where ! is the Lagrange multiplier attached to the land availability constraint.
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Thus, the expected marginal products of land are equalized across households.
To maximize aggregate expected output, we can solve the following programming

problem:

The first-order conditions for /; and ¢; imply that:

/3/19 /3/19 dQ, (p

i.e.,, an allocation of land that maximizes aggregate expected output is such that

the expected marginal products of land are equalized across households. O

Proof of Claim 3. Under no sharing, the first-order conditions for ¢; read as follows:

o (9Yi
@) (58 ™) dQy (o) =0
9/
Thus, unless the households are risk neutral (¢ = 0), the expected marginal prod-

ucts of land are not necessarily equalized across households. O

Proof of Theorem 1. For each B € (0,1], the first-order conditions for ¢; are

[ it 2L (B 7Y ag, (p) -0,

Letting
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we can rewrite these first-order conditions as

/sz< L )de(p)ZO

This equation shows that the effect of partial insurance on optimal land cultiva-
tion choices can be interpreted as the introduction of type- and state-specific dis-
tortions, affecting the marginal return of land in each state of the world. These
distortions imply that the expected marginal returns of land are not equalized to
zero across farms. Instead, they vary in proportion to the type- and state-specific
distortions. Notice that these distortions become more pronounced the further T;,

deviates from being constant across states of the world. Since

1
v?
log | —— / / 7pdQp (p) dj
ijUd]

is a constant, an increase in B amplifies the variance of T;, across states of the
ip

world. O]

Proof of Claim 4. The proof that each household consumes a constant fraction of
aggregate output, proportional to its Pareto weight, follows the same steps as the
proof of Claim 2. Therefore, we omit the details to avoid repetition.

The first-order conditions for ¢; and k; read as follows:

Y yldep

and

Fa 3 y“’de

where i/ and /¥ are the Lagrange multipliers attached to the land and material avail-

ability constraints, respectively. Thus, the expected marginal products of land are
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equalized across households, as are the expected marginal products of materials.

The first-order conditions for h; (p) read as follows:

Wip

Mi(p)

—p+A

To maximize aggregate expected output, we can solve the following programming

problem:

max //y,dep
/@m:u /hmzn /m@mﬁﬁﬂm,v@

where H (p) is the total amount of labor the households are willing to supply under

state p. The first-order conditions for /; and ¢; imply that

/ylp dQ, (p /%p dQ, (p

i.e.,, to maximize aggregate expected output, the expected marginal products of
land must be equalized across households. Similarly, it follows directly that the
equalization of expected marginal products of materials across households is a
necessary condition for maximizing aggregate expected output. The first-order

conditions for /; (p) and h;j(p) imply that

Wip _ Wijo
ohi(p)  ohi(p)’

for each p. O

Proof of Claim 5. Under no sharing, the first-order conditions for ¢; and k; read as

follows:

[ it (B - ) a0y (o) ~ 0

43



and
[ citon ™ (B2 - ™) agy o) =0

On the other hand, the first-order conditions for &; (p) read as follows:

—0’8 ip

Cl(p) agl _(P:O

Thus, unless the households are risk neutral (¢ = 0), the expected marginal prod-
ucts of land and materials are not necessarily equalized across households. The
misallocation of land and materials spills over to labor. That is, even though the
marginal products of labor are equalized across households—implying that stan-
dard marginal product equalization tests would fail to detect labor misallocation—
labor allocation across farms is indirectly distorted by the misallocation of land and

materials. O]

Proof of Theorem 2. For each € (0,1], the first-order conditions for ¢; and k; are

[ it %8 (W17 agy () ~0

anf;
and
_o 9¢; a]/
(ci(p)) ™ 2Li8) (e _ or) 40, (p) =0,
o7T; ok
ip 1
where
aci (p) g
Ci\p P 1(7 P 13
§) —exp < plog () + (1 = P)log | —— [ [ nhdQ, (p)aj | L5
Letting
_gaCl’
Tip = (er(p)) 7 218)
ip
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we can rewrite these first-order conditions as

i
[T, (a%j—rp) dQ, (p) =0

;i
/Tip(ach —qp> dQ, (p) =0.

These equation show that the effect of partial insurance on optimal land cultivation

and

and choice of materials can be interpreted as the introduction of type- and state-
specific distortions. These distortions become more pronounced the further Tj,
deviates from being constant across states of the world. Notice that an increase in

B amplifies this variance. O

Proof of Theorem 3. For each B € (0,1], the first-order conditions for b,,;; are

—0 OCypit _ —0 ICmit+1p
_/ (Cmitpt> #dgp (pt) + (1 + RP) / (Cmit+1pt+1> an.P—tHdQP (pt—H) =0,

mitp, mit+1p, ¢

which is a standard Euler equation. The first-order conditions for £,,;; (b,,,i;—1) and

kmit (bmit—l) are

— acmitpt ( aymitpt p>
- —P)d ~0
/ <letp"‘> ort? it (bmit—1) ) dQp (e

mitp,
and
- acmitpt ( a]/mitpt p)
Ci —r; |d = 0.
/ ( mWf) aniitpt kit (bmir—1) ' Qe (P
The rest of the proof follows the same steps as the proof of Theorem 2. O
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Supplementary Appendix

A Theory appendix

A.1 Discussion of modeling assumptions

Household types. Our model features households that are ex-ante heterogeneous
in their “permanent” agricultural productivity. The importance of heterogeneity in
farm productivity has been emphasized in various fundamental papers, including
Adamopoulos and Restuccia (2014), Chen et al. (2023), and Adamopoulos et al.
(2022). By focusing our model on ex-ante heterogeneity in productivity, we can ex-
amine the relationship between risk-sharing and the misallocation of inputs cho-
sen ex ante. We adopt this approach because the production decisions we are in-
terested in are naturally viewed as choices made before any shocks to agricultural
yields, such as rainfall or pests, occur.?

Land markets. The model in Section 2 assumes that land markets are undis-
torted. This modeling choice allows us to distinguish our findings from most of
the results in the misallocation literature, where land misallocation typically stems
from land market frictions. We relax this assumption in Appendix D.1. The in-
complete markets economy introduced in Subsection 2.1 features an environment
where households initially possess land endowments and engage in trading these
endowments within a competitive land market before production occurs. Alterna-
tively, we may imagine that competitive moneylenders initially own all the plots
and sell them to households before farming takes place. Our findings apply in

both contexts.

26 Alternatively, one could model an economy where households are ex-ante homogeneous, re-
ceive productivity shocks, and make land cultivation decisions ex-post (after their productivity is
revealed). This framework would still allow one to analyze the impact of insurance on misalloca-
tion; however, the misallocation would be contingent on the realization of those shocks.
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Land ownership and tenancy. In our model, purchasing (respectively, selling)
land is essentially equivalent to renting in (respectively, renting out) land; i.e.,
there is no difference between ownership and tenancy. A dynamic model may
feature channels through which imperfect risk-sharing influences the decision to
sell versus rent land. In a frictionless environment, a standard arbitrage condition
dictates that the selling price of land should equal the net present value of its ex-
pected future rental earnings. Missing insurance markets, borrowing constraints,
and imperfections in the saving technology might deter farmers from selling land,
which serves as a buffer stock. The presence of these frictions implies that the cash
obtained from selling land cannot be perfectly smoothed over time or across states
of the world, and that a farmer who sells land might subsequently be forced to en-
gage in renting. In this context, the insurance value of owning land may contribute
to land misallocation by affecting the relationship between a landowner’s produc-
tivity and the amount of land owned. Our empirical analysis closely aligns with
our theoretical framework, focusing on misallocation in operational landholdings

that encompass both owner-cultivators and renters.

Consumption functions. We model the relationship between consumption and
income using consumption functions, as specified in Equation (1). We adopt this
approach for two main reasons. First, it directly corresponds to our empirical spec-
ification for estimating the elasticity of consumption with respect to idiosyncratic
income shocks, as introduced in Equation (6), which is a standard specification in
the literature (see, e.g., Morten (2019)). This correspondence is crucial because, in
our quantitative exercise (Subsection 5), we calibrate the consumption functions
so that B matches the estimated elasticity of consumption with respect to idiosyn-
cratic income shocks. Second, this approach falls within the tradition of the liter-

ature on exogenously incomplete markets?” and partial insurance (Blundell et al.,

?Contrast the approach where (c;); are primitives of the model with the perspective taken in
the literature on optimal risk-sharing (Townsend, 1994) and endogenously incomplete markets
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2008). In particular, these consumption functions formalize the idea that house-
holds participate in a risk-sharing arrangement, allowing them to pool their agri-
cultural incomes to insure against idiosyncratic shocks and are flexible enough to
capture a whole range of possible risk-sharing arrangements, from no sharing to
tull insurance. Note that risk-sharing does not have to be egalitarian: the Pareto
weights (v;); allow different types of households to receive different fractions of
the constant aggregate output. We deliberately sidestep detailed explanations of
the underlying reasons for the specific forms of the consumption functions, which
determine the level of insurance in the economy, focusing instead on how differ-
ent degrees of insurance influence land misallocation. Finally, beyond providing
a flexible way to model the relationship between household consumption and in-
come, the consumption function in Equation (1) has the advantage of directly cor-
responding to our strategy to estimate risk-sharing in Subsection 4.2. Recall that,
in our model, p is set sufficiently high to ensure that household income remains
strictly positive for all possible land cultivation choices. Alternatively, positive
cash-on-hand can be ensured by introducing an asset that allows households to

borrow and save (see Appendix A.3).

A.2 Model with other factors of production

In this appendix, we show that all the results from Section 2 remain valid in a
model that incorporates materials and labor as factors of production, where we
also allow labor to be chosen after the realization of output shocks.

Consider a version of the model in Section 2 where household types are defined

by a productivity level 6; and an endowment

(i.5).

(Sleet, 2006), where agents” consumption functions are derived from optimal consumption alloca-
tion problems featuring deeper primitive constraints on monitoring or enforcement technologies.
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where k; represents initial materials for a household of type i.

Households decide how much land to cultivate and how much material to buy
before output shocks are realized. Since households of the same type are ex-ante
identical and make these choices prior to the realization of shocks, their land and
material allocations are identical within each type. Thus, we can refer to ¢; and
k; as the land cultivated and materials utilized by a household of type i. Besides
choosing land and materials, households decide how many hours to work. Labor
supply decisions are made after the output shocks are realized, in contrast to ma-
terials and land. We assume households have complete information, so they can
choose the amount of labor to employ conditional on the realization of all output
shocks in the economy, p. Since households of the same type are ex-ante identical,
we can unambiguously define the function 4;(p), which represents the farm labor
supply of a household of type i when state p is realized. The output produced by
a household of type i in state p is given by

l k h
Yip = ABiplf ki (hi (p))"

where A is an aggregate productivity term, af,a¥,a € (0,1), and a’ + aF + " < 1.

Let r be the price of land and g the price of materials. Given these prices, let

Tlip = Yip — 1 (51' _Zi> —q (ki —751'>

denote the income of a household of type i when state p is realized.
Let k = (k;); and h(p) = (hi(p));. To characterize an allocation of resources
under complete markets, we solve the following planner’s problem for a given

collection of type-specific Pareto weights (v;);:

(e (p)' |
max v | | — ol 4o di,
(C(P))plf,k,(h(p))p/ / [ 1—0 ¢hi(p) o (p)
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subject to the land and materials availability constraints

/zidi:/”e}di:L
/ kidi = / kdi=K,

and

and the feasibility constraint

//Ci(P)de(P)di://yideP (p)di.

The following claim describes an allocation of resources under complete markets.

Claim 4. Under full insurance, each household consumes a constant fraction of aggregate

output, with the fraction being proportional to its Pareto weight. Moreover,
1. the expected marginal products of land are equalized across households,
2. the expected marginal products of materials are equalized across households,

3. the marginal products of labor are equalized across households, in each state of the

world.
Finally, aggregate expected output is maximized.

Next, we analyze the allocation of land that arises in a competitive equilibrium
under no risk sharing. In this case, the income of a household of type i in state p is
given by

it =yip —r™ (fi - Zi) —q™ (ki - E‘) /

IM and qIM denote the equilibrium prices of land, materials, and labor

where r

under incomplete markets. The household’s optimization problem is then given
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(o
-~ (i) N
liki (hi(p)), 1-0 Phi(p p(0).
The following result demonstrates that incomplete insurance markets lead to factor

misallocation, even when all factor markets operate without frictions.
Claim 5. Under no sharing, there is land, materials, and labor misallocation.

One implication of this result is that the presence of factor markets where inputs
are chosen after the realization of output shocks does not undo the misallocation
caused by missing insurance markets. The reason is that if some factors of produc-
tion are chosen before shocks are realized (e.g., land and materials), but insurance
markets are missing, households distort their ex-ante input choices to self-insure
against risk. After output shocks are realized, households adjust their ex-post in-
put choices (e.g., labor) by equating the realized marginal product of labor to its
price, thereby maximizing their income. However, as long as inputs chosen ex post
are not perfect substitutes for those chosen ex ante, the distortions in ex-ante input
choices caused by missing insurance markets “spill over” to those chosen ex post.

Finally, consider an environment with partial insurance. Let the income of a

household of type i in state p is given by

”p:yip_rp (Ei—Z> —q" (ki_%z)r

where ¥ and g denote the equilibrium prices of land, materials, and labor under
partial insurance. We define the following consumption function for a household

of type i:

ci(p) = exp ﬁlog(ﬂﬁ,)ﬂl—ﬁ)log Ud]// »dQp (p
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The following theorem extends Theorem 1 to settings with multiple factors of pro-

duction.

Theorem 2. Land market misallocation increases in the elasticity of consumption with

respect to own income, p.

A.3 Model with borrowing and saving

In this section, we show that Theorem 2 extends to environments where house-
holds can borrow and save through a risk-free asset. To do so, we build on the
static model in Appendix A.2 by introducing time in a discrete setting. In this
framework, households have additively separable preferences over time and dis-
count the future at a constant rate E. Let p, be the state of the world in period ¢,
assumed to be identically and independently distributed over time. Households
can borrow and save through a risk-free asset. Let b,,,;; denote the amount of bonds
held by household m of type i in period t (where a negative value indicates bor-
rowing). This amount must be repaid in the following period at the interest rate
RP. In each period, households decide how much land to cultivate and how much
material to employ before the realization of p,. After p, is realized, they choose

how much labor to supply to their own farm. Let these choices be denoted by

(Emit (bmitfl) Kt (bmitfl) Minit ((bmitfl) /Pt)) .

Denote household m’s farm output when state p, realizes by

l k h

Ymitp, = A0i0t (Lunit (Dmit—1))" (kmit (bit—1))" (Mot (Bmiz—1),04))"
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The income of a household m of type i in period t when state p, realizes is given

by
n;l;itp, = Ymitp, — Tt <5mit (bmit—1) — Zi) —qf (kmit (Dyit—1) — E‘) + <1 + RP) binit—1 — bimit-

Let consumption for household m of type i in period t when state p, realizes be

1
144 .
Cuitp, = exp { 10g (7Thisp, ) + (1 - )log s [ ] [ 7bie,dQp (py) dnct
vidj
J

The following theorem generalizes Theorem 2 to environments where households

can borrow and save through a risk-free asset.

Theorem 3. Land market misallocation increases in the elasticity of consumption with

respect to own income, p.

B Data appendix

We use information from the “Village Dynamics Studies in South Asia” (VDSA)
project by ICRISAT, a widely used panel data set (Townsend (1994), Mazzocco and
Saini (2012), and Morten (2019), among many others). The data is collected through
different modules (general endowment, cultivation schedule, rainfall schedule,
among others) containing questions on different topics generally asked to the house-
hold head. Questions asked only to the household head generally refer to informa-
tion about the whole household. Some modules ask questions to a greater subset of
the household members (e.g., the questions in the employment schedule are asked
to all members who completed 6 years of age).

Most modules are collected at a monthly frequency (e.g., the employment sched-
ule) while others only come at a yearly frequency (for instance, the general en-

dowment schedule, and the questions in the cultivation schedule that refer to
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agricultural output). We use data from July 2010 to June 2015. We aggregate the
individual-level data to the household level. We end up with monthly household-
level panel data, containing information on farming, expenditure, and income for

families in 18 villages in the Indian semi-arid tropics.

General endowment schedule. This schedule provides annual, individual-level
data on various characteristics of household members, including age, sex, educa-
tion, and primary and secondary occupations. Additionally, it offers household-
level details on landholdings, such as ownership status, total and irrigable areas,
and various soil characteristics. We leverage the data on these characteristics to
build the measures of average soil depth, slope, fertility, and degree of degrada-
tion introduced in Subsection 3.3. The schedule also contains yearly household-
level data on livestock, farm equipment, buildings, durable consumption goods.
stocked items (like crops, cooking fuel, and agricultural inputs), assets, liabilities,
gender roles, and coping strategies employed in response to self-reported negative
income shocks.

We employ the individual-level demographic data in this schedule to construct
an age-sex index at the household-year level, following the methodology described
in Townsend (1994). Specifically, we assign individual weights based on age and
sex as follows: 1 for males over 18 years, 0.9 for females over 18 years, 0.94 for
males aged 13 to 18, 0.83 for females aged 13 to 18, 0.67 for children aged 7 to 12,
0.52 for children aged 4 to 6, 0.32 for toddlers aged 1 to 3, and 0.05 for infants under
one year. We then calculate the household-year age-sex index by aggregating these
weights for each household annually. In Subsection 4.2, we utilize this index to
adjust household-level consumption and income variables to per capita terms.

The general endowment schedule provides detailed information on each house-
hold’s landholdings annually, with the plot as the unit of observation. This in-

cludes data on ownership status—whether owned, leased, shared, or mortgaged—
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and identifies the household members associated with each plot. It also details
both total and irrigable areas, proximity to the house, irrigation sources and their
distances. Additionally, the schedule provides information on plot attributes such
as soil type (e.g., red, shallow black, medium black, deep black), fertility (an or-
dered scale from 0 to 4), slope (an ordered categorical variable indicating the de-
gree of the plot’s slope), soil degradation (a categorical variable indicating whether
the plot is subject to soil degradation and specifying its type), and average soil
depth in centimeters. The schedule also notes the presence of bunds, number of
trees, if the plot is owned or leased, potential sale revenue, actual rent paid or
received, and an imputed rental value for owned plots. We utilize the detailed
information on plot attributes to construct measures of average soil depth, slope,
fertility, and degree of degradation, which we use to construct a measure of land
quality used in the estimation of household-farms’ physical productivity (see Sub-
Section 3.3). Specifically, define fertility ;,, slope

degradation,,;, and depth,;, as

pit’ pit’
the fertility, slope, degradation, and soil depth for plot p cultivated by household i
in year 7. For each x € {fertility, slope,degradation, depth}, we define

¢ pit
)l

Xit = xpit/

peP(it) Lyep(it) bp'it

where P (it) is an index set for the set of plots cultivated by household i in year .

Finally, we leverage the farm equipment section of the general endowment
schedule to construct a measure of farm’s value of intermediate agricultural in-
puts. Each year, the household head is asked to report the names and values of
all farm equipment items owned by the household, including plows, sprayers,
dusters, electric motors, diesel pumps, bullock carts, tractors, trucks, threshers,
pipelines, rice mills, and flour mills, among others. We aggregate this data at the
household-year level to create a farm-specific measure of yearly value of materials

for each household. We use this variable in the estimation of household-farms’
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physical productivity, as detailed in Subsection 3.3.

Cultivation schedule. The cultivation schedule is divided into two main sec-
tions: inputs and outputs. We start with an overview of the input section. This
part of the schedule gathers detailed monthly data on the inputs utilized by each
household for every operation conducted on each plot they farm. Specifically, in-
terviewers asks the household head to detail all operations carried out on each
cultivated plot in each month. For every operation, they collect data on the quan-
tities and costs of the inputs used. Thus, the unit of analysis for this section is the
operation conducted on each plot by each household each month.

One fundamental piece of information we can obtain from the input section
of the cultivation schedule is the household’s labor supply to their farm, which
we use in the estimation of household-farms’” physical productivity, as detailed
in Subsection 3.3. This section meticulously details the total labor hours devoted
to each farming operation, categorizing them by family, hired, and exchange la-
bor—specifically distinguishing contributions from females, males, and children—
as well as labor provided by bullocks, motors, and other sources. To calculate the
total labor supplied by a household to their farm, we aggregate the labor hours
contributed by family members to each operation across all plots at the household-
month level.

The output section gathers data differently, focusing not on individual opera-
tions each month but on crop production each season for each plot. Specifically,
interviewers collect information from household heads regarding the quantity (in
kilos) and value of each crop harvested during the defined agricultural seasons:
Rabi, Kharif, annual, perennial, and summer. A critical measure derived from this
section is the total annual output quantity per household, which serves as the de-
pendent variable in Equation (2). To obtain this variable, we compute the total

output produced by each household across all cultivated plots and each season
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throughout the year, aggregating this data at the household-year level. Another
crucial variable compiled from the output section of the cultivation schedule is the
total size of the plots cultivated by each household annually. We use this variable
as a measure of land size in the estimation of household-farms’ physical produc-
tivity, as explained in Subsection 3.3. An advantage of this variable is that it reflects
the total land cultivated by the households, independent of ownership title, legal

status, or other formal distinctions (see Subsection 3.2).

Transaction schedule. This schedule meticulously documents every monetary
inflow and outflow for each household on a monthly basis, along with the mon-
etary value of all home-produced commodities. Rather than providing a direct
measure of household consumption, the expenditure segment records detailed in-
dividual expenditures on food and non-food items, as well as the monetary value
of home-produced commodities that are consumed. This level of granularity in
consumption items is one of the key advantages of the ICRISAT dataset, as it al-
lows us to compile a comprehensive measure of monthly household consumption
by aggregating these recorded values at the household-month level. As a result,
measures of household consumption are never imputed from household income,
not even for the poorest households. To derive a measure of monthly household
income, we adopt the budget-constraint approach of Mazzocco and Saini (2012).

Specifically,

* We use the section on financial transactions to track monthly household cash

flows from lending and borrowing activities.

¢ The section on loans allows us to keep track of monthly inflows from loans

and repayments by the household.

¢ From the section on government benefits, we determine monthly receipts of

state-provided aid to households.
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* The section on product and livestock sales allows us to measure the monthly

revenue households earn from agricultural and livestock sales.

¢ The section on asset sales and purchases allows us to monitor the households’

monthly financial activities related to the trading of capital goods.

We construct our measure of total monthly household income, we compute:

Income;; = Consumption,;, — Cash received;; + Cash lent;;

— Loans received;; + Loans repaid;, + Government benefits received;;.

We use the age-sex index defined above to convert the household-level monthly
consumption and income variables to per capita terms. These variables are em-

ployed in Subsection 4.2 to estimate the level of risk-sharing in Indian villages.

Rainfall schedule. The rainfall schedule provides detailed information on rain-
fall levels (measured in millimeters) for each village daily, derived from readings
at the nearest weather station. We aggregate these daily measurements over a year,
to generate total village-specific annual rainfall. This aggregation yields the total
annual rainfall for each village, denoted as rain,;. We utilize this variable to pa-
rameterize the impact of observable environmental shocks on output, as specified

in Equation (4).

C Further empirical results

C.1 Agricultural output decomposition

In Table C1, we decompose the variance of agricultural output into its different
sources. We employ two measures. In column (1) we report the R-squared from

regressing household-farms” annual physical output on various production inputs
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separately, one by one. The R-squared suits our purpose as it indicates the propor-
tion of variance in the dependent variables explained by the regressors.

In column (2) we report the Shapley value (expressed in %) of each production
input. The Shapley value quantifies the average marginal contribution of each
variable to the explained variance in agricultural output, considering all possible
combinations of the explanatory variables. Each Shapley value is computed by
averaging the incremental changes in R-squared when an explanatory variable is

added to a subset of other variables across all possible subsets.

Table C1: Input contributions to agricultural output

Variable R-squared Shapley value (%)
@) )
Rainfall shocks: Var [@rainw] 0.004 0.161
Land quality, Var [log7i<] 0.103 3.469
Household-farms’ physical productivity: Var [log GAZ} 0.614 41.57
Family labor: Var [logh;] 0.382 19.03
Materials: Var [logk;] 0.292 10.08
Landholdings: Var [log¢; ] 0.277 10.02

Notes: Column (1) reports the R-squared from regressing household-farms’ annual physical output on
various production inputs separately, one by one. Column (2) reports the Shapley value (expressed in %)
of each production input.

Differences in estimated physical productivity stand as the major sources of
variation in production yield across household-farms. Using the R-squared, dif-
ferences in estimated physical productivity can explain around 60% of the varia-
tion in annual yields across households. Using the Shapley value, more than 40%
of total output variation across farms can be attributed to differences in estimated

physical productivity.
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C.2 Imperfect risk-sharing in the ICRISAT villages

Column (1) of Table C2 reports the OLS estimates for equation (6). Column (2)
reports the OLS estimates of equation (6) extended with an interaction between log
of per-capita income, Inrrj;, and a dummy variable [1 — Hand-to-mouthj| taking
value 0 if the household i is hand-to-mouth at time ¢ (i.e., it has a stock of savings

lower than a monthly income) and 1 otherwise; that is,

logcy; = Blog s + dlog iy x [1 — Hand-to-mouth;;] 4+ u#[1 — Hand-to-mouthy]

+ Xi + Xot + €it-

Finally, Column (3) reports the OLS estimate an alternative regression for house-

hold i within village v in month ¢:
Alogciy = BAlog i + Xot + €it

where, Alogc;; and Alogr;; denote log changes in per-capita consumption and

per-capita income, respectively, for household i between two consecutive months.

C.3 Instrumental variable strategy

In this section, we propose an instrumental variable strategy that may get us closer
to identifying the causal effect of risk-sharing on land misallocation. It should be
noted that identifying exogenous variation in risk-sharing across village economies
is an extremely challenging task. Therefore, while the results in this section are
not intended to provide a definitive causal estimate of the impact of risk-sharing
on land misallocation, it is reassuring that they align with the predictions of our
model.

Our strategy uses village caste composition as an instrument for risk-sharing.

Specifically, we propose that villages with a more homogeneous caste structure are
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Table C2: Risk-sharing in the ICRISAT villages

In Cit Aln Cit
OLS OLS OLS
) ©) ®)

In 773 0.223***  (0.265***
0.018)  (0.021)
In7;; x [1 — Hand-to-mouth;;] -0.042
(0.016)
Aln 7, 0.206***
(0.019)
Household FE v v
Village-time FE v v v
Observations 46,369 45,781 41,263
R-squared 0.681 0.690 0.319

Notes: The unit of analysis across all columns is the household year. Col-
umn (1) presents the results of regressing monthly log consumption per
capita on monthly log income per capita while controlling for household
and village-month fixed effects. Column (2) extends the regression in col-
umn (1) by interacting monthly log income per capita with a dummy variable
[1 — Hand-to-mouth;;], taking value 0 if the household i is hand-to-mouth at
time £, and 1 otherwise. Column (3) refers to the specification in log changes.
Standard errors (in parentheses) are clustered at the village-year level across
all columns.

better able to provide insurance to their villagers. Considering relevance first, sev-
eral studies (Munshi and Rosenzweig (2016), Mazzocco and Saini (2012), Munshi
(2019)) argue that caste networks play an important role in providing credit and in-
surance to its members. Secondly, exclusion restriction requires caste composition
to be uncorrelated with land misallocation once we control for risk-sharing. Caste
composition in our villages is very persistent, with an average coefficient of vari-
ation below 0.10. Thus, it seems unlikely that differences in the ability of village
factor markets to efficiently allocate production factors among households would
affect caste composition through permanent migration aimed to capitalize on the
benefits of operating in more efficient rural land markets. On the other hand, al-
though the caste structure of a village may certainly influence its ability to access
resources (e.g., members of upper castes may have better access to financial prod-
ucts, such as loans), we believe there is no clear reason to suggest that it directly

impacts the extent to which the community manages to efficiently allocate factors
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of production.

Below we highlight our instrumental variable strategy in detail. The ICRISAT
data records each household head’s caste (jati), sub-caste, and caste group (back-
ward caste, forward caste, nomadic tribe, other backward caste, scheduled tribe,
and special backward caste). Although we share Munshi (2019)’s concerns regard-
ing the analysis of caste networks based on broad caste groups rather than jatis,
our limited sample size necessitates the use of these broader categories. Let [J be
an index set for the set of caste groups, where j denotes a typical element in this
set. Let nj, be the number of households belonging to a caste group j in village v,
with ), 11, = n,. We construct a measure of caste diversity in village v as 1 minus

the Simpson’s Diversity Index:

 Ljeg Mo (1= 1jo)
1y (1 —ny)

Zp =1

Because of the very limited variation over time in caste composition, we let our
instrumental variable vary across villages only.

Finally, we estimate the following equation independently for each village v
and year T,

logciy = Borlog iy + xi + Xt + €t

Then, we relate our two measures of misallocation in each village and year, de-
noted by wyr, to the elasticities of consumption with respect to idiosyncratic in-

come shocks at the village level, BUT:

Wyt = ')’Bvr + @1+ €7,

where we use z, as an instrumental variable for Bvr-
Table C3 reports first and second-stage IV estimates together with F-stat. A one-

unit increase in our measure of caste diversity results in a 0.415-point increase in
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Table C3: Land misallocation and risk-sharing - Role of caste diversity

COIT.;r {log lit,1log é\lJ st.dev.,¢ [logMPL;;]

(1) (2)
Bvr -1.331** 2.095%%*
(0.574) (0.579)
Observations 90 90
R-squared 0.783 0.858
,BUT
(1)
Zv 0.415**
(0.126)
Observations 90
F-stat 10.87

Notes: Standard errors are robust. Source: VDSA survey (ICRISAT) and

own calculations.
the village-specific elasticity of consumption with respect to idiosyncratic income
shocks. Our instrumental-variable strategy suggests that a one-unit increase in this
elasticity results in a 1.331-point decrease in the correlation between farm size and
productivity and a 2.095-point increase in the dispersion of the marginal product

of lands.

C.4 Alternative measure of land quality

Here, we perform a robustness check on the results in Section 3 using an alter-
native measure of land quality. Following De Giorgi et al. (2024), we construct
this measure based on plot-level indices of agricultural suitability, which are esti-
mated from a comprehensive regression of plot rental values on land characteris-
tics, while controlling for village-level permanent unobserved heterogeneity and
year-specific fixed effects. The idea behind this approach is that the rental value of

a plot reflects valuable information about its suitability for agricultural production;
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i.e., its “quality.” Specifically, we run the following regression:

log (rental,ir) = f <typepiT,fertilitypiT, slopepir,degradationpiT,depthpiT;1[))
T @0 + P+ €pir,

where rental,;; represents the self-reported rental value of plot p cultivated by
household i in year 7; “type” denotes a categorical variable reflecting the plot’s soil
type; “fertility” is an ordered categorical variable measuring the plot’s fertility on
a scale from 0 to 4; “slope” is an ordered categorical variable indicating the degree
of the plot’s slope; “soil degradation” is a categorical variable indicating whether
the plot is subject to soil degradation and specifies its type; “depth” refers to the
average depth of the plot measured in centimeters; f is a function that represents
linear and higher-order terms for the included variables, along with multiple inter-
action terms between those variables; 1 is a parameter vector; ¢, are village fixed
effects; and ¢, are year fixed effects. We use the predicted values of this regression,
log (TerElpit), as plot-level indices of agricultural suitability. The intuition is that
these predicted values contain information about the extent to which the interac-
tions of multiple soil characteristics, village-level permanent unobserved factors,
and year-level aggregate shocks influence the suitability of a plot for agricultural
production. To generate a household-year level land quality index, we average

these suitability indices as follows:

L —

Y pep, <log (rentaly;r) x api7>

2],’) S Pi'r aPiT

/

it =

7

where a,,;; denotes the area of plot p cultivated by household i in year 7, and P;; is
an index set for the set of plots cultivated by household i in year 7.
We use this alternative measure of land quality to reproduce two main findings

from the main text. First, in Table C4 we report the contribution of each input to the
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Table C4: Input contributions to agricultural output—alternative land quality
measure

Variable R-squared Shapley value (%)
) ()
Rainfall shocks: Var [@rainvf] 0.004 0.191
Land quality, Var [log ;] 0.186 7.500
Household-farms’ physical productivity: Var [log 51} 0.584 36.91
Family labor: Var [logh;] 0.382 19.43
Materials: Var [logki] 0.292 9.513
Landholdings: Var [log¢; ] 0.277 10.72

Notes: Column (1) reports the R-squared from regressing household-farms” annual physical output on
various production inputs separately, one by one. Column (2) reports the Shapley value (expressed in %)
of each production input.

agricultural output. While our alternative measure of land quality explains twice
as much of the overall output variation across farms as before (7.5 versus 3.5%,
see Table C1), household-farms” physical productivity still represents the biggest
source of output variation, with a Shapley value of about 37%.

Second, we construct the two measures of land misallocation using our alter-
native proxy for land quality and relate them to the degree of risk sharing across
villages and years. Specifically, we estimate different specifications of Equation (7)
in the main text, and report the outcomes in Table C5. All the new estimates are

virtually unchanged.

D Further counterfactual results

D.1 Incomplete insurance vs. farm-specific distortions

In this appendix, we discuss the robustness of our results to the inclusion of generic
farm-specific distortions (wedges). These wedges capture the effects of frictions in

output or land markets that may disproportionately affect more productive farm-
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Table C5: Risk-sharing and land misallocation—alternative land quality measure

COIT.pr [logéh,log@} st.dev.,r [logMPL;]
1) (2 3) 4 (©) (6) ) (8)
Bvr -0.639***  -0.675*** -0.132* -0.187* 0.691** 0.715*** (0.150*** (0.178***
(0.234) (0.230)  (0.078) (0.096) (0.175)  (0.230) (0.056)  (0.069)
Observations 90 90 90 90 90 90 90 90
R? 0.100 0.116 0.892 0.942 0.220 0.229 0.901 0.944
Year FE v v v v v v
Village FE v v v v
Village time trends v v

Notes: The unit of analysis across all columns is a village-year pair. The first four columns present the results of regressing
our first measure of land misallocation on the estimated village-and-year-specific consumption elasticities to idiosyncratic
income shocks. The following four columns show the results using our second measure of land misallocation. Standard
errors in parentheses are computed using village-level clustered bootstrap (5,000 replications) following the procedure in
Cameron et al. (2008).

ers, such as land ceilings (Adamopoulos and Restuccia, 2020), restrictions on land
rental activities (Chari et al., 2021; Acampora et al., 2022), borrowing constraints
(Midrigan and Xu, 2014), or size-dependent policies that directly tax/subsidize
output (Guner and Ruggieri, 2022). Formally, we assume households of type i are

subject to an “output tax,” 7;. This tax is given by
T=1-6%, (10)

where { governs the correlation between output distortions and household pro-

ductivity. Then, the output of a farmer of type i is
(1 — N\ 0. — pl=C
Yip = (1 — 1) 0,07 =0; ~pli.

Notice that when ¢ > 0, distortions are positively correlated with household pro-
ductivity, meaning high-productivity households face relatively higher distortions.
Conversely, when ¢ < 0, high-productivity households face relatively lower dis-

tortions. When ¢ = 0, there are no output distortions in the economy, and output
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production reverts to the scenario described in the main text.?®

To quantify the gains from full insurance using the model described in this ap-
pendix, we estimate two parameters: the coefficient of relative risk aversion, ¢, and
the correlation between productivity and output wedges, (. All other parameter
values are as in Section 5. As in Section 5, we estimate ¢ by matching the aver-
age correlation between log farm size and log productivity, while ( is estimated by

targeting the share of households operating land smaller than 5 hectares.

Table D1: Estimated parameters

Parameters Description Value Target Data Model
o Relative risk aversion 1.647 corr. {log liz,log (31} 0461 0.452
4 Distortion correlation 0.052 Land < 5 hectares, share of households 0.801 0.810

Notes: This table reports the estimates for the coefficient of relative risk aversion and the correlation between output distor-
tions and farm productivity, and the targets used in estimation; i.e., the average correlation between log farm size and log
productivity and the share of households operating with land smaller than 5 hectares. Source: VDSA survey (ICRISAT) and
own calculations.

Table D1 presents the estimates of ¢ and {, together with the empirical and
simulated values of their respective targeted moments. The estimated coefficient
for o is slightly higher than the value obtained in the model without distortions, at
1.65 compared to 1.60. We estimate { at 0.052, which implies a positive correlation
between distortions 7; and (log) productivity 6; across households of about 0.9.
Specifically, distortions take the form of an output tax as big as 30% for households
with the highest productivity and of a subsidy of 1.5% for households with the
lowest productivity.

Table D2 reports the outcomes of the same counterfactual exercise described
in Section 5 implemented within a model with output distortions. Column (1)
refers to a baseline scenario where consumption insurance is partial, (8 = 0.223),

and households’ land decisions are distorted by wedges that are correlated to their

2For some combination of { and 6;, 7; can be negative. In this case, distortions take the form
of a subsidy towards household i. For further applications of the functional form in Equation (10)
to describe firm-level distortions in developing countries, see Guner and Ruggieri (2022), among
others.
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productivity ({ = 0.052). Columns (2) refer to a counterfactual scenario where risk

sharing is perfect (8 = 0), keeping everything else equal. Columns (3) refer to a

counterfactual scenario where risk sharing is perfect (8 = 0) and distortions are

absent (¢ = 0).

Table D2: Counterfactual exercise - Risk sharing vs. correlated distortions

Baseline Counterfactual ~ Explained
(partial insurance) (full risk-sharing) %
(1) (&) €)) (4)
B 0.223 0 0 -
g 0.052 0.052 0 -
Share of land, top 1% productive farms 0.017 0.082 0.086 -
Share of land, top 10% productive farms 0.151 0.608 0.627 -
Land dispersion (st.dev.[log¢;;]) 0.314 2.458 2.589 -
Aggregate efficiency (output per hectare) 1 1.393 1.896 43.86%
Aggregate output 1 1.183 1.614 29.80%
Aggregate welfare 1 1.137 1.158 86.71%

Source: VDSA survey (ICRISAT) and own calculations.

The aggregate output gains from improving risk-sharing in an economy with

farm-specific distortions amount to 18%, closely aligned with the gains observed

in an economy without wedges (Table D2 in Section 5). When we move to a fully

undistorted scenario, the output gains are equal to 61%. The efficiency gains of full

insurance, when accounting for output distortions, are 39%, compared to 90% in

the distortion-free scenario.

This implies that incomplete risk sharing accounts for between 29.8% and 43.9%

of the overall gains that can be achieved from moving to a fully undistorted econ-

omy. These results show that assuming the existence of farm-specific distortions

only marginally reduces the estimated output, efficiency, and welfare gains from

improving risk-sharing.
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D.2 Robustness to alternative land elasticity

In this section, we test the robustness of our main counterfactual results to an al-
ternative value of the land elasticity, a. In particular, we fix & = 0.50, a value closer
to the estimates of the decreasing returns-to-scale parameter in the farming tech-
nology found in the literature. We keep the values of all the other parameters
unchanged, relative to the main calibration, except for the coefficient of relative
risk aversion, o, which is re-estimated to match the average correlation between
log farm size and log productivity. We find a value for ¢ of 1.675, not far from our

baseline estimate of 1.60 (Table 6 in the main text).

Table D3: Estimated risk aversion - Alternative land elasticity

Parameters Description Value Target Data Model

log Relative risk aversion 1.675 corr. {log liz,log @} 0461 0470

Notes: This table reports the value of the coefficient of relative risk aversion that is estimated to
match the average correlation between log farm size and log productivity.
Table D4 reports selected outcomes for the baseline and counterfactual economies.
Again, Column (1) corresponds to the baseline scenario, where consumption in-
surance is partial (8 = 0.223) while Column (2) corresponds to a counterfactual

scenario in which risk-sharing is perfect (8 = 0).

Table D4: Counterfactual exercise - Alternative land elasticity

Baseline Counterfactual
(partial insurance) (full risk-sharing)

@ &)
B 0.223 0
Share of land, top 1% productive farms 0.017 0.135
Share of land, top 10% productive farms 0.162 0.797
Land dispersion (st.dev.[log¢;;]) 0.320 4.180
Aggregate efficiency (output per hectare) 1 2.131
Aggregate output 1 1.671
Aggregate welfare 1 1.519

Source: VDSA survey (ICRISAT) and own calculations.
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All the results are qualitatively the same as those in the main text. On the other
hand, a larger calibrated value for a implies larger output and welfare gains from

completing insurance markets, equal to 67% and 52%, respectively.
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