
Chapter 5

Estimators

De�nition. A random sample is a sample that satis�es two conditions:

� Every object has an equal probability of being selected

� The objects are selected independently.

Consider a random sample x1, ..., xn. Notice that - although any given sample obser-

vation xi takes a speci�c numerical value - in each sample it is still a random variable,

since if the sampling process were repeated it will then take a di�erent numerical value.

Therefore each of these observations are ex-ante identical and independent random vari-

ables.

5.1. De�nition and properties

Let x1, ..., xn be a random sample of X. Let τ be a population parameter that charac-

terizes X and let T be a measure designed to estimate τ . Since each observations in a

sample is ex-ante an iid random variable, also T is random variable.

Estimators. Let T be a statistics to estimate τ . Then T is an estimator of τ . It is

a random variable and depends on the sample data. Its distribution is called sampling

distribution.

Unbiasedness. An estimator T of τ is said to be unbiased if

E[T ] = τ

The bias of an estimator T is de�ned as the di�erence between its expected value and

value of the population parameter, i.e.

bias[T ] = E[T ]− τ
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If E[T ] > τ , we say that T is biased upward. If E[T ] < τ , we say that T is biased

downward.

E�ciency. Let T1 and T2 be two two unbiased estimators of τ . Let V ar[T1] <

V AR[T2]. Then T1 is said to be more e�cient than T2.

Mean square error. A combined measure of bias and ine�ciency is given by the

mean squared error, de�ned as follows:

MSE[T ] = E[(T − τ)2] = E[(T − E[T ] + E[T ]− τ)2] =

E[(T − E[T ])2 + (E[T ]− τ)2 + 2(T − E[T ])(E[T ]− τ)] =

E[(T − E[T ])2] + E[(E[T ]− τ)2] + 2E[(T − E[T ])(E[T ]− τ)]] =

E[(T − E[T ])2] + E[(E[T ]− τ)2] + 2E[(TE[T ]− Tτ − (E[T ])2 + E[T ]τ)] =

E[(T − E[T ])2] + E[(E[T ]− τ)2] =

VAR(T ) + E[BIAS(T )2] = VAR(T ) + BIAS(T )2

Among the unbiased estimators, the one with the minimum MSE has the smallest vari-

ance, i.e. is the most e�cient.

Asyptotical unbiasedness. Let {Tn} be a sequence of the same estimator T of τ ,

constructed over samples with di�erent sizes n. Then T is said to be asyptotically

unbiased if

lim
n→∞

E[Tn] = τ

i.e. if the bias tends to zero as the sample size n increases.

Consistency. Let {Tn} be a sequence of the same estimator T of τ , constructed over

samples with di�erent sizes n. Then T is said to be a consistent estimator of τ if the

probability of deviations of Tn from τ decreases as n increases, i.e.

lim
n→∞

P [|Tn − τ | > ε] = 0

for any ε > 0. Notice that if an estimator is asymptotically unbiased, then it is consistent

if

lim
n→∞

V AR[Tn] = 0

Notice that any asympotically unbiased estimator can still display positive variance as

n increases if it inconsistent.
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5.1.1 Example: The sample mean

Consider a series of continuous iid random variable X. Assume µ the expected value of

X and σ2 be the variance. Let x̄ be the sample mean of X from a sample of size n.

The expected value of x̄ is equal to:

E[x̄] = E

[∑n
i=1 xi
n

]
=

1

n
E

[
n∑
i=1

xi

]
=

1

n

n∑
i=1

E[xi] =
1

n

n∑
i=1

E[xi] =
1

n

n∑
i=1

µ =
1

n
nµ = µ

This implies that the x̄ is an unbiased estimator of µ, i.e.

BIAS[x̄] = E[x̄]− µ = 0

The variance of x̄ is equal to:

VAR[x̄] = VAR

[∑n
i=1 xi
n

]
=

1

n2
VAR

[
n∑
i=1

xi

]
=

1

n2

n∑
i=1

VAR[xi] =
σ2

n

Notice that if X where not iid, then:

VAR[x̄] = VAR

[∑n
i=1 xi
n

]
=

1

n2
VAR

[
n∑
i=1

xi

]
=

1

n2

 n∑
i=1

VAR[xi] + 2

n∑
i=1

∑
j=i

COV [xi, xj ]


Let s2 be the sample variance of X from a sample of size n. The expected value of s2

is equal to

E[s2] = E

[∑n
i=1[xi − E[x̄]]2

n− 1

]
= σ2

The variance of s2 is equal to

VAR[s2] = VAR

[∑n
i=1[xi − E[x̄]]2

n− 1

]
=

2σ2

n− 1

5.1.2 Theorem: The central limit theorem

Informally, the central limit theorem states that the sample mean of a random sample

of n observations drawn from a population with any probability distribution will be

approximately normally distributed, if n is large.

Theorem: Let X1, X2, ... be i.i.d. random variables obtained by sampling from an

arbitrary population. Let Sn = X1 + X2 + ...Xn. Denote by E[Sn] and VAR[Sn]
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expected value and variance of Sn. Let

zn =
Sn − E[Sn]√
VAR[Sn]

Then, zn converge in distribution to a standard normal distribution for n that increases.

Corollary The random variable Sn
n converges to a normal distribution with expected

value 1
nE[Sn] and variance 1

n2VAR[Sn].

5.1.3 Theorem: The law of large number

Informally, the law of large number states that, for a given a random sample of size n

taken from a population mean, the sample mean will approach the population mean as

n increases, regardless of the underlying probability distribution of the data.

Theorem: Let X1, X2, ... be i.i.d. random variables obtained by sampling from an

arbitrary population. Let x̄n be the sample mean for a sample with size n. Then, for

any positive number ε > 0,

lim
n→∞

P (|x̄n − µ| > ε) = 0

5.2. Con�dence Interval

Informally, a con�dence interval (CI) indicates a range of values that's likely to encom-

pass the population value. The probability that the con�dence interval encompasses the

true value is called the con�dence level of the CI.

To construct a con�dence interval for a population parameter τ at con�dence level α%,

we have to �nd the interval where τ will falls into with probability 1 − α. Practically,
we identify a sample statistic that we cab use to estimate a population parameter, say

T ∼ N(τ, σ2
T ).

Case 1 V AR[T ] is a known parameter.

Then we compute

P (a ≤ T ≤ b) = 1− α

To do so, we standardize T and obtain:

P

(
a− τ
σT

≤ Z ≤ b− τ
σT

)
= 1− α
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or equivalently,

P (−zα
2
≤ Z ≤ zα

2
) = 1− α

where zα
2
is called critical value of z statistics corresponding to α for a two-tail con�dence

interval. zα
2
can be computed using the statistical tables for a standard normal random

variable. Therefore, we get:

P
(
−zα

2
≤ Z ≤ zα

2

)
= 1− α

P

(
−zα

2
≤ T − τ

σT
≤ zα

2

)
= 1− α

P
(
−zα

2
σT ≤ T − τ ≤ zα2 σT

)
= 1− α

P
(
T − zα

2
σT ≤ τ ≤ T + zα

2
σT
)

= 1− α

The quantity zα
2
σT is called margin of error.

Case 2 σ2
T is a unknown parameter. In this case, we standardize T using an estimator

of σ2
T , i.e. the sample variance s

2
T and obtain:

P

(
a− τ
sT

≤ Z ≤ b− τ
sT

)
= 1− α

or equivalently,

P (−tn−1,α2 ≤ tn−1 ≤ tn−1,α2 ) = 1− α

where tn−1 is now a t-student random variable with n−1 degrees of freedom, and tn−1,α2
are critical values of t associated to α for a two-tail con�dence interval. tn−1,α2 have to

be computed using now the statistical tables for a t-student random variable. Therefore

in this case, we get:

P (−tn−1,α2 ≤ tn−1 ≤ tn−1,α2 ) = 1− α

P
(
T − tn−1,α2 sT ≤ τ ≤ T + tn−1,α2 ≤ tn−1sT

)
= 1− α

Property. As n increases, tn−1 converges to z. This means that for values n > 30,

one can use values from the statistical table for z.

5.3. Exercises

Exercise 1 Suppose you are a drink producer and your drinks are sold in 250ml

bottles. Due to some imperfections in the production process, the actual volume in each

bottle varies. The production process has a mean of 250ml and a standard deviation of

20ml. A consumer watchdog takes a sample of 30 of your bottles and measures their
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content precisely. You will get bad press if the sample mean is below 245ml. What is

the probability that you will get bad press?

Exercise 2 A random sample of 16 bags of a chemical were tested to estimate the

mean impurity content. It is known that the impurity content is distributed normally.

The sample mean impurity content was 20.4 grams, and the sample standard deviation

was 6.4 grams. Find the 95% con�dence interval for the population mean.

Exercise 3 An auditor takes a random sample of 400 invoices relating to the activities

of a company in a particular year. The sample mean of the invoices is 250GBP and the

sample standard deviation is 64GBP. Find a 95% con�dence interval for the population

mean of the company invoices in the same year.
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