# Labor Market Power and Development

# Armangué-Jubert<sup>a</sup>, N. Guner<sup>b</sup>, A. Ruggieri<sup>c</sup>

 $^{a}$ UAB and BSE  $^{b}$ CEMFI  $^{c}$ CUNEF

SAEe 2023 - December 14, 2023

- Differences in GDP per capita across countries explained by differences in aggregate efficiency (Hsieh and Klenow '08).
- Imperfect competition in the labor market leads to efficiency losses and lower aggregate output (Manning '11).

**Q:** Can differences in labor market power explain the observed differences in GDP p.c. across countries?

# This paper

- Structurally estimate labor supply elasticities for countries with different levels of GDP p.c. using a GE model of oligopsony.
- Quantify the effect of differences in labor market power on GDP p.c. along the development ladder.
  - What would the GDP p.c. in low-income countries be if their labor markets were as competitive as those in high-income countries?

- The labor supply elasticity is increasing with development.
  - estimates range from **0.8** in low-income countries to around **3.2** in high-income countries
  - $\implies$  wage markdowns range from 55% in low-income countries to 23% in high-income countries.
- Low-income countries would see an increase of up to **69%** in output p.c. with labor supply elasticities comparable to those of high-income countries.
- Differences in labor supply elasticities account for **22%** and **40%** of observed differences in GDP p.c. and firm-wage dispersion.

## Literature

- Labor market power estimation
  - Amodio and De Roux 23; Amodio et al. 22; Azar et al. 22, Brooks et al. 22.
- Implications of labor market power
  - Card et al. 18; Dustmann et al. 22; Berger et al. 22.
- Cross-country income differences and frictions/distortions
  - Bento and Restuccia 17; Poschke 18; Guner and Ruggieri 22.

# Model Setup

- Static economy.
- Discrete number  $\bar{J}$  of heterogeneous potential entrants j, differing in:
  - Productivity  $z_j \sim \text{Pareto}(\alpha, \theta)$
  - Amenities  $a_j \sim \text{Uniform}(0, \bar{a})$
- In equilibrium only  $J^* < \bar{J}$  firms enter.
- Continuum of homogeneous workers i of measure L.
- Preference shock over firm -j amenities:
  - $v_{ij} \sim \text{Gumbel}(0,1)$

#### Workers' Problem

• Utility for worker i from working at firm j:

$$U_{ij} = \epsilon^L \ln(w_j) + a_j + v_{ij}.$$

• Probability of working at firm *j*:

$$p_j(\vec{\mathbf{w}}_J, J) = \frac{\exp\left(\epsilon^L \ln(w_j) + a_j\right)}{\sum_{k=1}^J \exp\left(\epsilon^L \ln(w_k) + a_k\right)}$$

where  $\vec{\mathbf{w}}_J = [w_1, ..., w_J].$ 

• Firm-*j*'s labor supply:

$$L_j(\vec{\mathbf{w}}_J, J) = L \times p_j(\vec{\mathbf{w}}_J, J).$$

#### Firms' Problem

• Firms' production function

$$Y_j = z_j \ln(L_j)$$

• Profit maximization problem:

$$\max_{w_j} \quad \pi_j(\vec{\mathbf{w}}_J, J) = z_j \ln(L_j(\vec{\mathbf{w}}_J, J)) - w_j L_j(\vec{\mathbf{w}}_J, J)$$
  
s.t.  $L_j(\vec{\mathbf{w}}_J, J) = L \times p_j(\vec{\mathbf{w}}_J, J)$ 

• Firms enter if  $\pi_j(\vec{\mathbf{w}}_J, J) \ge c_e$ .



Given  $\{L, \epsilon^L, \bar{J}, c_e\}$  and the distributions of firm productivity and amenities, an equilibrium is a vector of labor supply decisions  $\vec{\mathbf{p}}_{J^*}^* = [p_1^*, ..., p_{J^*}^*]$ , a vector of wages  $\vec{\mathbf{w}}_{J^*}^* = [w_1^*, ..., w_J^*]$ , and a number of firms  $J^*$  such that:

- $\vec{\mathbf{p}}_{J^*}^*$  solves the workers' problem;
- $\vec{\mathbf{w}}_{J^*}^*$  solves the firms' problem, i.e.

$$w_j^* = \arg\max_{w_j} \pi_j(\vec{\mathbf{w}}_J^*, J^*) \quad \forall j = 1, \dots J^*;$$

•  $J^*$  is such that free entry condition holds, i.e.

• 
$$\pi_j(\vec{\mathbf{w}}_J^*, J^*) \ge c_e \quad \forall j = 1, ...J^*$$
  
•  $\pi_j(\vec{\mathbf{w}}_{J^*+1}^*, J^*+1) \ge c_e \quad \not\forall j = 1, ...J^*+1$   
•  $J^* < \bar{J}$ 

#### Firm-Size Wage Premium

- Assume  $J^*$  to be sufficiently large  $\implies$  no strategic interaction (Card et al., 18)
- Firm-j's labor supply:

$$L_j = Lp_j(w_j)$$
 and  $p_j(w_j) \approx \xi \exp\left(\epsilon^L \ln(w_j) + a_j\right)$ 

where  $\xi$  is a market-level constant

• Firm-level wage-size relationship

$$\ln(w_j) = \frac{1}{\epsilon^L} \ln(L_j) - \frac{1}{\epsilon^L} \left[ \ln(L) + \ln(\xi) + a_j \right].$$

**P1:** The firm-size wage premium is inversely related to the labor supply elasticity.

### Firm-Size Dispersion

- Assume J to be sufficiently large  $\implies$  no strategic interaction (Card et al., 18)
- Firm-*j*'s equilibrium employment:

$$\ln(L_j) = \frac{\epsilon^L}{1 + \epsilon^L} \left[ \ln(z_j) + \ln\left(\frac{\epsilon^L}{1 + \epsilon^L}\right) \right] + \frac{1}{1 + \epsilon^L} [\ln(L) + \ln(\xi)]$$

which implies:

$$\operatorname{var}(\ln(L_j)) = \left(\frac{\epsilon^L}{1+\epsilon^L}\right)^2 \operatorname{var}(\ln(z_j))$$

**P2:** The conditional firm-size dispersion increases with the elasticity of the labor supply  $\epsilon^L$ .

### Firm-Wage Dispersion

- Assume  $J^*$  to be sufficiently large  $\implies$  no strategic interaction (Card et al., 18)
- Firm-*j*'s equilibrium wage:

$$\ln(w_j) = \frac{1}{1+\epsilon^L}\ln(z_j) - \frac{1}{\epsilon^L}a_j + C$$

which implies:

$$\operatorname{var}(\ln(w_j)) = \frac{1}{(1+\epsilon^L)^2} \operatorname{var}(\ln(z_j)) + \frac{1}{(\epsilon^L)^2} \operatorname{var}(a_j)$$

**P3:** The wage dispersion across firms is inversely related to the labor supply elasticity  $\epsilon^L$ .

# Summary

- The model yields three predictions:
  - **P1:** The elasticity of wages to firm employment is inversely related to the labor supply elasticity.
  - **P2:** The firm size dispersion is increasing with the labor supply elasticity.
  - **P3:** The firm wage dispersion is decreasing with the labor supply elasticity.

# Estimating $\epsilon^L$

- Endogeneity rules out reduced form estimation of the equilibrium conditions to recover  $\epsilon^L$ :
  - Wages are jointly determined by labor demand and supply.
- Strategic interaction and unobserved amenities lead to estimation bias.
  - We cannot simply use the OLS estimate of

$$\ln(w_j) = \alpha + \beta \ln(L_j) + \eta_j$$

because

$$\hat{\beta} \neq \frac{1}{\epsilon^L}$$

• This paper's approach: indirect inference.

## Estimation

- Parameters to estimate:  $\vartheta = \{\bar{J}, \epsilon^L, L, \alpha, \theta, \bar{a}, c_e\}.$
- $\overline{J}$  calibrated directly from the data (Amodio et al 22).
- The other 6 parameters are estimated via SMM by targeting:
  - Number of firms.
  - Average firm size.
  - Firm size dispersion.
  - Wage dispersion across firms.
  - Firm-size wage premium.
  - GDP per capita.

## Targeted Moments

- To estimate  $\epsilon^L$  along the development path, we construct 4 artificial countries via OLS.
- We estimate the model for Colombia separately to validate our results with previous literature.

We merge 4 datasets to construct the targeted moments.

- For the firm-size wage premium, the wage dispersion and the number of firms we use the World Bank Enterprise Surveys (WBES).
- For the average firm size we use data from Bento and Restuccia (2017).
- For the firm size dispersion we use data from Poschke (2018).
- For output per capita we use GDP per capita in PPP terms and 2017 USD from the World Bank.

#### Number of Firms

• Estimate an auxiliary regression using mean number of firms in countries' region-industry tuples

$$J_i = \alpha_1 + \alpha_2 \log(\text{GDPpc}_i) + \eta_i$$



• The number of firms in a local labor market is increasing with development.

Average firm size across countries

• Estimate an auxiliary regression using average firm size:

$$\bar{\ell}_i = \alpha_1 + \alpha_2 \log(\mathrm{GDPpc}_i) + \eta_i$$



• Average firm size is increasing with development.

Firm size dispersion across countries

• Estimate an auxiliary regression using firm size dispersion

 $\operatorname{iqr}(\ell)_i = \alpha_1 + \alpha_2 \log(\operatorname{GDPpc}_i) + \eta_i$ 



• Firm size dispersion is increasing with development.

Wage dispersion across countries

• Estimate an auxiliary regression using wage dispersion across firms

 $\operatorname{std}(\ln(w))_i = \alpha_1 + \alpha_2 \log(\operatorname{GDPpc}_i) + \eta_i$ 



• Wage dispersion across firms is decreasing with development.

#### Firm-size wage premium across countries

• Estimate, separately for each country, the following regression

$$\ln(w_{jt}) = \alpha + \beta \ln(L_{jt}) + X_{jt}\gamma + \mu_t + \mu_{s(j)} + \mu_{o(j)} + \epsilon_{jt}$$

controlling for year FEs,  $\mu_t$ , 3-digit sector FEs  $\mu_{s(j)}$ , and location FEs  $\mu_{o(j)}$ 

• Estimate an auxiliary regression using the estimated firm-size wage premia:

$$\hat{\beta}_i = \alpha_1 + \alpha_2 \log(\text{GDPpc}_i) + \eta_i$$

## Firm-size wage premium across countries



• The firm-size wage premium is decreasing with development.

## Simulated Method of Moments

- For each of the 4 stages and Colombia, we estimate the model via SMM.
- Loss function

$$\mathcal{L}(\omega) = g(\omega)' \mathbb{I}g(\omega),$$

where  $g(\omega)$  is a vector of percentage deviations of each simulated moment with respect to the target.

## Model Fit



# Auxiliary regressions

|                        | Dat       | ta      | Simul     | ated    |
|------------------------|-----------|---------|-----------|---------|
| Regression             | Intercept | Slope   | Intercept | Slope   |
| Firm Size Wage Premium | 0.2152    | -0.0169 | 0.2261    | -0.0181 |
| Average Firm Size      | -19.2718  | 3.0607  | -17.072   | 2.9161  |
| Firm Size Dispersion   | -6.7335   | 1.0774  | -7.0918   | 1.2640  |
| Wage Dispersion        | 2.0052    | -0.1452 | 2.1182    | -0.1582 |

- We run the auxiliary regressions on the 4 simulated stages.
- Model does a great job capturing how key moments change with GDP p.c.

## Estimated Parameters

| log GDP per capita  | Pareto           | Uniform          | LS Elasticity  | Mass of       | Entry Cost | Pareto           |
|---------------------|------------------|------------------|----------------|---------------|------------|------------------|
|                     | Shape $(\alpha)$ | Dispersion $(b)$ | $(\epsilon^L)$ | Workers $(L)$ | $(c_e)$    | Scale $(\theta)$ |
| 8 (\$2,980)         | 1.56             | 8.76             | 0.8            | 176.75        | 0.83       | 1513.95          |
|                     | (0.006)          | (2.914)          | (0.000)        | (120.386)     | (0.000)    | (0.249)          |
| 9 (\$8,100)         | 1.72             | 6.28             | 1.65           | 506.57        | 1.16       | 5906.99          |
|                     | (0.002)          | (2.997)          | (0.000)        | (51.099)      | (0.000)    | (0.175)          |
| 10 (\$22,000)       | 1.71             | 6.08             | 2.67           | 964.64        | 1.5        | 19146.58         |
|                     | (0.001)          | (0.129)          | (0.000)        | (30.687)      | (0.000)    | (0.154)          |
| 11 (\$59,900)       | 1.91             | 4.91             | 3.24           | 1713.09       | 1.86       | 95108.08         |
|                     | (0.001)          | (2.234)          | (0.050)        | (31.072)      | (0.000)    | (0.118)          |
| Colombia (\$12,300) | 1.89             | 4.91             | 2.42           | 1713.09       | 1.14       | 95108.08         |
|                     | (0.002)          | (0.523)          | (0.0)          | (30.844)      | (0.0)      | (0.132)          |

- Wage markdowns range from 55% in poorest countries to 23% in the richest.
- Our estimate for Colombia is very close to that of Amodio and De Roux (2023).

# Closing the Gap

Using our model we run the following counterfactual:

- What would happen if all countries had the labor supply elasticity of the richest one?
- We set the labor supply elasticity of all 5 stages, Colombia and India equal to that of the country at the highest development stage ( $\epsilon^L = 3.24$ ).
- Other parameters left unchanged.

Closing the Gap: GDP per capita



- Poorest countries could increase GDP p.c. by **69%**
- Differences in labor supply elasticity account for **22**% of observed differences in GDP p.c.

Closing the Gap: Wage Inequality



 Differences in labor supply elasticity account for 40% of observed differences in wage dispersion across firms.

#### Mechanism

- Higher labor supply elasticity reduces the relative importance of amenities and pushes wages towards MRPL.
- This changes the competitive ranking of firms and reallocates labor towards more productive firms.



Cumul. Share of Employment (8)





- We use a frontier model of oligopsony to structurally estimate the labor supply elasticity along the development path
- We document that labor market competition is increasing in development
  - Wage markdowns range from 55% in the poorest countries to 23% in the richest.
- Poorer countries could increase GDP p.c. up to **69%** with similar labor market competition of the richest ones.
- Differences in labor supply power account for **22%** and **40%** of GDP p.c. and wage dispersion across firms.

# Appendix A1: Solving for equilibrium

- 1 Given the number of potential entrants  $\overline{J}$  and the distributions  $\Phi(z_j)$  and  $\Psi(a_j)$ , draw the vectors of productivities  $\vec{\mathbf{A}}$  and amenities  $\vec{\mathbf{a}}$  of potential entrants.
- 2 Set the initial number of firms equal to the number of potential entrants  $J^{x=-1} = \overline{J}$ .
- 3 Solve the fixed point of wage schedules and rank firms by profitability, use the positive profit threshold to guess the starting value  $J^{x=0}$ . back

- 4 With the current value of  $J^x$ , solve the fixed point of wage schedules:
  - (a) Guess the vector of wages  $\vec{\mathbf{w}}^{i=0} = [w_1^{i=0}, w_2^{i=0}, ..., w_J^{i=0}].$
  - (b) Compute  $\lambda$  using expression 2.
  - (c) For each firm  $j \in J$ :
    - i. Solve the profit maximization problem using the current vector  $\vec{\mathbf{w}}$  and associated value of  $\lambda$  to obtain an updated wage  $w_i^{i+1}$ .
    - ii. Adjust the updated wage for smooth convergence using:  $w_j^{i+1} = \delta w_j^{i+1} + (1-\delta) w_j^i$  and some  $\delta \in (0,1)$ .
  - (d) If  $\vec{\mathbf{w}}^i$  and  $\vec{\mathbf{w}}^{i+1}$  are sufficiently close, the Nash Equilibrium has been found. If not, return to step (b).

- 5 Given the fixed point of wage schedules  $\vec{\mathbf{w}}^*$ , compute the vector of firm profits  $\vec{\pi}$  and:
  - If  $\pi_j \ge 0 \ \forall j$  and  $J^{x-1} \ne J^x + 1$  set  $J^{x+1} = J^x + 1$  and return to step 4.
  - If  $\pi_j \ge 0 \ \forall j \text{ and } J^{x-1} = J^x + 1 \text{ stop with } J^x$ .
  - If  $\pi_j \geq 0 \ \forall j$  and  $J^{x-1} \neq J^x 1$  set  $J^{x+1} = J^x 1$  and return to step 4. The firm removed is the firm with the lowest competitiveness.

• If 
$$\pi_j \not\geq 0 \ \forall j$$
 and  $J^{x-1} = J^x - 1$  stop with  $J^{x-1}$ .



## Appendix A2: Location-Sector Labor Markets in WBES



# Appendix A3: Number of Firms - Regression Results

| R-squared       | 0.037       |           |         |        | Ν        | 37889    |
|-----------------|-------------|-----------|---------|--------|----------|----------|
| Number of Firms | Coefficient | Std. err. | t       | P >  t | [0.025   | 0.975]   |
| Intercept       | -195.644    | 7.208     | -27.142 | 0.0    | -209.772 | -181.516 |
| ln GDPpc        | 28.9131     | 0.762     | 37.957  | 0.0    | 27.42    | 30.406   |

## Appendix A4: Mean Firm Size - Regression Results

| R-squared:        | 0.271       |           |        |        | N=      | 73     |
|-------------------|-------------|-----------|--------|--------|---------|--------|
| Average Firm Size | Coefficient | Std. err. | t      | P >  t | [0.025] | 0.975] |
| Intercept         | -19.2718    | 5.716     | -3.372 | 0.001  | -30.668 | -7.875 |
| ln GDPpc          | 3.0607      | 0.597     | 5.131  | 0.000  | 1.871   | 4.250  |

# Appendix A5: Firm Size Dispersion - Regression Results

| R-squared:       | 0.266       |           |        |        | N=      | 42     |
|------------------|-------------|-----------|--------|--------|---------|--------|
| Std. of Log-Size | Coefficient | Std. err. | t      | P >  t | [0.025] | 0.975] |
| Intercept        | -0.4292     | 0.425     | -1.010 | 0.319  | -1.288  | 0.430  |
| ln GDPpc         | 0.1578      | 0.041     | 3.807  | 0.000  | 0.074   | 0.242  |

# Appendix A6: Wage Dispersion - Regression Results

| R-squared:       | 0.339       |           |        |        | Ν       | 138    |
|------------------|-------------|-----------|--------|--------|---------|--------|
| Std. of Log-Wage | Coefficient | Std. err. | t      | P >  t | [0.025] | 0.975] |
| Intercept        | 2.0052      | 0.160     | 12.551 | 0.000  | 1.689   | 2.321  |
| ln GDPpc         | -0.1452     | 0.017     | -8.355 | 0.000  | -0.180  | -0.111 |

# Appendix A7: Firm Size Wage Premium - Regression Results and Robustness

|                         | (1)     | (2)     | (3)     | (4)     | (5)     | (6)     | (7)     | (8)     | (9)     | (10)    | (11)    | (12)    | (13)    | (14)    |
|-------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| log (GDPpc)             | -0.0278 | -0.0263 | -0.0199 | -0.0270 | -0.0265 | -0.0277 | -0.0275 | -0.0205 | -0.0169 | -0.0251 | -0.0238 | -0.0140 | -0.0212 | -0.0119 |
|                         | (0.008) | (0.007) | (0.008) | (0.008) | (0.008) | (0.008) | (0.008) | (0.008) | (0.007) | (0.007) | (0.007) | (0.007) | (0.008) | (0.008) |
| Year FE                 | Yes     |
| Sector FE               | No      | Yes     | No      | No      | No      | No      | No      | No      | Yes     | Yes     | Yes     | Yes     | Yes     | Yes     |
| Region FE               | No      | No      | Yes     | No      | No      | No      | No      | No      | Yes     | No      | No      | Yes     | No      | Yes     |
| Exporter FE             | No      | No      | No      | Yes     | No      | No      | No      | No      | No      | Yes     | Yes     | Yes     | Yes     | Yes     |
| Foreign-Owned FE        | No      | No      | No      | No      | Yes     | No      | No      | No      | No      | No      | Yes     | Yes     | Yes     | Yes     |
| Informal Competition FE | No      | No      | No      | No      | No      | Yes     | No      | No      | No      | No      | No      | No      | Yes     | Yes     |
| Publicly-Traded Firm FE | No      | No      | No      | No      | No      | No      | Yes     | No      | No      | No      | No      | No      | Yes     | Yes     |
| Firm Age Group FE       | No      | Yes     | No      | No      | No      | No      | Yes     | Yes     |
| Constant                | 0.3287  | 0.3137  | 0.2443  | 0.3149  | 0.3084  | 0.3224  | 0.3241  | 0.2565  | 0.2152  | 0.2960  | 0.2782  | 0.1750  | 0.2417  | 0.1464  |
|                         | (0.072) | (0.066) | (0.070) | (0.071) | (0.069) | (0.073) | (0.070) | (0.078) | (0.065) | (0.066) | (0.064) | (0.063) | (0.076) | (0.074) |

Standard errors in parentheses

## Appendix B: Global Minima in Estimation

