Macroeconomics of "Large Firms"

Lecture 1: The basics of firm dynamics

Alessandro Ruggieri
University of Nottingham

CEMFI, PhD short course

This lecture

- Hopenhayn H. 1992. "Entry, Exit, and Firm Dynamics in Long Run Equilibrium". Econometrica. Vol. 60, No. 5, pp. 1127-1150
- Workhorse model of industry dynamics
- Partial equilibrium
- Focus on steady-state: wages and prices are constant
- Individual dynamics: firms enter, grow, decline, and exit
- Competitive firms, no strategic interactions

Model

- Time is discrete
- Wage is the model numeraire $(w=1)$
- Output price p endogenous
- Endogenous measure of heterogeneous firms
- DRS production function
- Perfect competition in product and labor markets
- No aggregate risk
- Idiosyncratic risk: firm productivity follows a Markov process
- Entry-exit dynamics
- Fixed cost to enter
- Fixed cost to operate each period
- Partial equilibrium: exogenous industry demand

Heterogeneous firms

- Firms differ in productivity z
- Firm-level output

$$
f(z, n)=z n^{\alpha} \quad \alpha \in(0,1)
$$

- Static firm-level profits

$$
\pi(z ; p)=\max _{n \geq 0} p f(z, n)-n-p c_{o}
$$

where c_{o} denotes per-period operating costs.

- Let $n(z ; p)$ denote optimal employment

$$
n(z ; p)=(p \alpha z)^{\frac{1}{1-\alpha}}
$$

- Let $y(z ; p)=f(z, n(z ; p))$ denote associated output

Problem of the incumbents

- Incumbents enter the period with states z_{-1}
- Exit decision:
- if stay, firms draw new productivity level $z \sim \Gamma\left(z \mid z_{-1}\right)$
- Employment decision (conditional on staying)
- choose new employment level n conditional on z
- pay operating costs c_{o} and produce $y(z ; p)^{*}$

Problem of the incumbents

- $V(z ; p)$: value function for firm in states z and aggregate price p

$$
V(z, p)=\pi(z ; p)+\frac{1}{1+r} \tilde{v}(z)
$$

where

$$
\tilde{v}(z)=\max \left\{0, \sum_{z^{\prime}} V\left(z^{\prime} ; p\right) \Gamma\left(z^{\prime} \mid z\right)\right\}
$$

- Solution to this problem is policy function for optimal exit: $\mathbf{1}^{x}(z ; p)$
- An exit productivity threshold z^{*} exists such that:

$$
\sum_{z^{\prime}} V\left(z^{\prime} ; p\right) \Gamma\left(z^{\prime} \mid z^{*}\right)=0
$$

Problem of the entrants

- Potential entrants are ex-ante identical
- New entrants $M \geq 0$ pay c_{e} and enter
- Draw productivity level z from $\Gamma^{e}(z)$ (ergodic distribution obtained from $\left.\Gamma\left(z \mid z_{-1}\right)\right)$
- Start producing next period
- Free entry condition:

$$
v^{e}(p)=\frac{1}{1+r} \sum_{z} V(z ; p) \Gamma^{e}(z) \leq c_{e}
$$

with equality if $M>0$.

Evolution of distribution

- Let $\mu_{t}(z ; p)$ be the measure of firms over individual state z when the goods price is p at time t
- Evolution of distribution over time:

$$
\mu_{t+1}\left(z^{\prime} ; p_{t}\right)=T_{t}\left(\mu_{t}\left(z ; p_{t}\right), M_{t}, p_{t}\right)
$$

where

$$
T_{t}\left(\mu_{t}\left(z ; p_{t}\right), M_{t}, p_{t}\right)=\sum_{z} \psi_{t}\left(z^{\prime} \mid z ; p_{t}\right) d \mu_{t}\left(z ; p_{t}\right)+M_{t} \Gamma^{e}(z)
$$

and

$$
\psi_{t}\left(z^{\prime} \mid z ; p_{t}\right)=\Gamma\left(z^{\prime} \mid z\right)\left[\mathbf{1}_{t}^{x}\left(z ; p_{t}\right)=0\right]
$$

denotes the transition function from the states z to z^{\prime}

Industry demand and supply

- Industry demand curve exogenous: $Y^{d}(p)=\bar{Y}$
- Industry supply curve endogenous:

$$
Y^{s}(p)=\sum_{z} y(z ; p) \mu(z ; p)
$$

- Inelastic labor supply function: $N^{d}=1$
- Industry labor demand, endogenous,

$$
L^{s}(p)=\sum_{z} n(z ; p) \mu(z ; p)+M c_{e}
$$

Equilibrium

A recursive stationary equilibrium for this economy is characterized by a measure of entrants M^{*}, a distribution of incumbent firms $\mu^{*}(z ; p)$, a price p^{*} and a productivity threshold z^{*} such that the following four conditions hold:

- Optimality: $\forall z<z^{*}, \mathbf{1}^{x}(z)=1$
- Free-entry $v^{e}=c_{e}$;
- Goods market clearing: $Y^{s}\left(p^{*}\right)=\bar{Y}$;
- Aggregate consistency: $\mu^{*}\left(z ; p^{*}\right)=T\left(\mu^{*}\left(z ; p^{*}\right), M^{*}, p^{*}\right)$.

Computation

- Step 1: guess a price p_{0}
- Step 2: solve for the value of the incumbent, $v\left(z ; p^{0}\right)$. A solution to this problem implies an optimal exit rule, $\mathbf{1}^{x}\left(z ; p^{0}\right)$
- Step 3: compute the value of entry, v^{e} and check if free-entry condition is satisfied:
- if no, make a new guess p_{1} and go back to step 2 till convergence
- if yes, store $p^{*}=p_{0}$
- Step 4: given p^{*}, solve for the stationary distribution of incumbents $\mu\left(z ; p^{*}\right)$ and measure of entrants M^{e}
- guess measure of entrants M_{0}^{e}
- calculate the stationary distribution $\mu\left(z ; p^{*}, M_{0}^{e}\right)$
- given $\mu\left(z ; p^{*}, M_{0}^{e}\right)$, compute total industry supply and check the if market clearing condition is satisfied:
- if no, make a new guess M_{1}^{e} and go back to step 4 till convergence
- if yes, store $M^{e *}=M^{e}$

Computation

- Steps 4 can be speeded up exploiting the property of linear homogeneity of the function $\mu(\cdot)$ with respect to M
- Re-write in matrix notation the function μ, i.e.

$$
\boldsymbol{\mu}=\boldsymbol{\Psi} \boldsymbol{\mu}+M \boldsymbol{\Gamma}
$$

- Solving for $\boldsymbol{\mu}$

$$
\boldsymbol{\mu}=M(\mathbf{I}-\boldsymbol{\Psi})^{-1} \boldsymbol{\Gamma}
$$

- No need to use simulations to find stationary distribution $\boldsymbol{\mu}$
- No need to iterate on M. Solve for μ imposing $M=1$
- Compute equilibrium M using market clearing condition

$$
M^{*}=\frac{\bar{Y}}{\sum_{z} y\left(z ; p^{*}\right) \mu\left(z ; p^{*}\right)}
$$

Computation

- What if corner solution, i.e. $M=0$? No entry/exit dynamics
- The stationary distribution of firms just given by stationary distribution of Markov chain, i.e.

$$
\mu(z ; p)=\sum_{z^{\prime}} \Gamma\left(z^{\prime} \mid z\right)=\mu(z)
$$

- Stationary distribution independent of p - no need to use free entry condition!
- Solve for p^{*} using the market clearing condition, i.e.

$$
Y^{s}\left(p^{*}\right)=\bar{Y}
$$

Numerical example

Productivity state-space:

- $\operatorname{AR}(1)$ process in logs:

$$
\log z^{\prime}=\mu+\rho \log z^{\prime}+\epsilon^{\prime} \quad \epsilon^{\prime} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Markov chain approximation using Tauchen method on 201 nodes

Baseline parameters (period model $=1$ year)

$$
\begin{aligned}
r=0.01, \alpha=0.78, \mu & =0, \rho=0.995, \sigma=0.14 \\
c_{o} & =10, c_{e}=80, Y^{d}=500
\end{aligned}
$$

Comparative statics

What happens if we increase the entry $\operatorname{cost} c_{e}$?

Entry costs: c_{e} / Y	0.36	0.41	0.46	0.50
Price	1	1.162	1.247	1.316
Output	1	1.448	1.728	1.989
Profits	1	1.453	1.732	1.993
$\#$ firms	1	0.676	0.5620	0.485
Firm Size	14.429	24.295	31.081	37.799
Exit rate	47.711	44.422	43.072	42.191
Productivity threshold	1	0.741	0.652	0.598

Comparative statics

Increase in entry costs c_{e} :

- decreases exit productivity threshold - less selection!
- decreases number of firms and exit rate
- increases prices

Two contrasting effects on firm-size

- price/value effects: higher c_{e} increases prices, which leads to higher output and employment
- selection effects: higher c_{e} reduces productivity thresholds, keeping low-productivity firms in the industry

If the density of firms near the exit point is very small, the first effect will dominate and the average value and profits increase with c_{e}.

Comparative statics

What happens if we increase the operating cost c_{o} ?

Operating costs: c_{o} / Y	0.04	0.08	0.13	0.20
Price	1	1.027	1.086	1.158
Output	1	1.165	1.532	1.8160
Profits	1	1.125	1.369	1.526
$\#$ firms	1	0.881	0.696	0.547
Firm size	14.429	17.270	24.010	33.337
Exit rate	47.711	51.761	57.402	61.217
Productivity threshold	1	1.408	2.159	2.791

Comparative statics

Increase in operating costs, c_{o} :

- increases exit productivity threshold - more selection!
- decreases number of firms
- increases entry/exit rate
- increases prices

As the c_{o} increases, the profit function changes, pushing profits down for every state. Productivity thresholds need to increase to maintain free-entry.

Extension: Adjustment Costs

Firm dynamics with adjustment costs

- Hopenhayn H. and Rogerson R. 1993. "Job Turnover and Policy Evaluation: A General Equilibrium Analysis". Journal of Political Economy. Vol.101, N.5, pp. 915-938
- General equilibrium version of Hopenhayn (1992)
- Non-convex adjustment cost (firing costs)
- No aggregate shocks
- Optimal employment policy characterized by inaction region
- Misallocation of resources across heterogeneous plants

Overview

- Large volume of job creation/destruction at firm-level
- Policies that make more costly to adjust employment level, i.e.
- legislated severance payments
- advance notice
- plant closing legislation
- What are the effects of such policies on
- employment
- aggregate output
- productivity
- Can labor market regulations explain heterogeneity in labor market performance across countries?
- Time is discrete
- Wage is the model numeraire $(w=1)$
- Output price p endogenous
- Representative household
- Consumption/labor supply decision
- No savings
- Endogenous measure of heterogeneous firms
- Perfect competition in product and labor markets
- Time-varying productivity
- Entry-exit dynamics
- Employment adjustment costs (firing tax)
- Free-entry

Representative Households

- Utility function of consumption C and labor supply N

$$
U(C, N)=\log C-A N
$$

where A denotes disutility from supplying labor.

- Discount factor: $\beta=1 / 1+r$
- Budget constraint:

$$
p C \leq N+\Pi \quad(w=1 \quad \text { is the numeraire })
$$

where Π are aggregate profits, re-distributed to HH lump-sum

Representative Households

- Problem of the HH:

$$
\begin{aligned}
U(C, N)=\max _{C, N} & \log C-A N \\
\text { s.t. } & p C \leq N+\Pi
\end{aligned}
$$

- First order conditions (at the interior) imply:

$$
\begin{array}{r}
C=\frac{1}{A p} \quad \text { (:consumption demand) } \\
N^{s}=\frac{1}{A}-\Pi \quad \text { (:labor supply) }
\end{array}
$$

- Firms differ in productivity z and employment n
- Firm-level output

$$
f(z, n)=z n^{\alpha} \quad \alpha \in(0,1)
$$

- Static firm-level profits

$$
\pi\left(z, n, n_{-1}\right)=p f(z, n)-n-p c_{o}-g\left(n, n_{-1}\right)
$$

where c_{o} denotes per-period operating costs.

- Adjustment costs (expressed in units of labor)

$$
g\left(n, n_{-1}\right)=\tau \max \left\{0, n_{-1}-n\right\}
$$

Problem of the incumbents

- Incumbents enter the period with states $\left(z_{-1}, n_{-1}\right)$
- Exit decision:
- if exit, firms pay $g\left(0, n_{-1}\right)$
- if stay, firms draw new productivity level $z \sim \Gamma\left(z \mid z_{-1}\right)$
- Employment decision (conditional on staying)
- choose new employment level n conditional on $\left(z, n_{-1}\right)$
- expanding firms ($n>n_{-1}$) subject to no cost
- shrinking firms ($n<n_{-1}$) subject to firing costs
- pay operating costs $p c_{o}$ and produce $f(z, n)$

Problem of the incumbents

- $V\left(z, n_{-1} ; p\right)$: value function for firm in states $\left(z, n_{-1}\right)$ and aggregate price p

$$
V\left(z, n_{-1} ; p\right)=\max _{n \geq 0} \pi\left(z, n, n_{-1}\right)+\frac{1}{1+r} \tilde{v}(z, n)
$$

where

$$
\tilde{v}(z, n)=\max \left\{-g(0, n), \sum_{z^{\prime}} V\left(z^{\prime}, n ; p\right) \Gamma\left(z^{\prime} \mid z\right)\right\}
$$

- Solution to this problem:
- Policy function for optimal employment policy: $n=g_{n}\left(z, n_{-1} ; p\right)$
- Policy policy for optimal exit: $\mathbf{1}^{x}\left(z, n_{-1} ; p\right)$

Problem of the entrants

- Potential entrants are ex-ante identical
- New entrants $M \geq 0$ pay c_{e} and enter
- Draw productivity level z from $\Gamma^{e}(z)$ (ergodic distribution obtained from $\left.\Gamma\left(z \mid z_{-1}\right)\right)$
- Hire n workers and produce
- Free entry condition:

$$
v^{e}(p)=\frac{1}{1+r} \sum_{z} V(z, 0 ; p) \Gamma^{e}(z) \leq c_{e}
$$

with equality if $M>0$.

Stationary distributions

- Let $\mu(z, n ; p)$ be the measure of firms over individual states z and n when the goods price is p
- Solution of the following linear system:

$$
\mu\left(z^{\prime}, n^{\prime} ; p\right)=T(\mu(z, n ; p), M, p)
$$

where

$$
\begin{array}{r}
T(\mu(z, n ; p), M, p)=\sum_{z} \int_{n} \psi\left(z^{\prime}, n^{\prime} \mid z, n ; p\right) d \mu(z, n ; p) \\
+M \Gamma^{e}(z) \mathbf{1}\left[g_{n}(0, z ; p)=n^{\prime}\right]
\end{array}
$$

and

$$
\psi\left(z^{\prime}, n^{\prime} \mid z, n ; p\right)=\mathbf{1}\left[g_{n}\left(n, z^{\prime} ; p\right)=n^{\prime}\right] \Gamma\left(z^{\prime} \mid z\right)\left[\mathbf{1}^{x}(z, n)=0\right]
$$

denotes the transition function from the states (z, n) to z^{\prime}, n^{\prime}

Aggregates

- Aggregate output:

$$
\begin{aligned}
Y & =\sum_{z} \int_{n_{-1}}\left[f\left(z, g_{n}\left(z, n_{-1}\right)-c_{f}\right] d \mu\left(z, n_{-1} ; p\right)\right. \\
& +M \sum_{z} f\left(z, g_{n}(z, 0) \Gamma^{e}(z)\right.
\end{aligned}
$$

- Labor demand:

$$
N^{d}=\sum_{z} \int_{n_{-1}} g_{n}\left(z, n_{-1} d \mu\left(z, n_{-1} ; p\right)+M \sum_{z} g_{n}(z, 0) \Gamma^{e}(z)+M c^{e}\right.
$$

- Aggregate profits:

$$
\Pi=p Y-N^{d}-p c_{o}
$$

Equilibrium

A recursive stationary equilibrium for this economy is characterized by a measure of entrants M^{*}, a distribution of incumbent firms $\mu^{*}(z, n ; p)$, and a price p^{*} such that the following three conditions hold:

- Free-entry $v^{e}=c_{e}$;
- Labor market clearing: $N^{s}=N^{d}$;
- Aggregate consistency: $\mu^{*}\left(z, n ; p^{*}\right)=T\left(\mu^{*}\left(z, n ; p^{*}\right), M^{*}, p^{*}\right)$.

Computation

- Step 1: guess a price p_{0}
- Step 2: solve for the value of the incumbent, $v\left(z, n ; p^{0}\right)$
- Step 3: compute the value of entry, v^{e} and check if free-entry condition is satisfied:
- if no, make a new guess p_{1} and go back to step 2 till convergence
- if yes, store $p^{*}=p_{0}$
- Step 4: given p^{*}, solve for the stationary distribution of incumbents $\mu\left(z, n ; p^{*}\right)$ associated with $M=1$
- Exploit linear homogeneity of T

$$
M \mu^{*}\left(z, n ; p^{*}\right)=M T\left(\mu^{*}\left(z, n ; p^{*}\right), M, M p^{*}\right)
$$

- Fixed point/MC simulation
- Step 5: given $\mu^{*}\left(z, n ; p^{*}\right)$, find M^{*} that makes the labor market clear

Numerical example

Productivity state-space:

- $\mathrm{AR}(1)$ process in logs:

$$
\log z^{\prime}=\mu+\rho \log z^{\prime}+\epsilon^{\prime} \quad \epsilon^{\prime} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Markov chain approximation using Tauchen method on 51 nodes

Employment state-space:

- maximum number of employees: 3000
- 500 points (400 points between 1 and 200 employees)

Baseline parameters (period model $=5$ years)

$$
\begin{array}{r}
r=0.25, \alpha=0.64, \mu=0.25, \rho=93, \sigma=0.17 \\
c_{o}=20, c_{e}=40, A=0.45, \tau=0
\end{array}
$$

Employment policy function

- Without adjustment costs $(\tau=0)$, optimal employment decision given by:

$$
n^{\prime}=(\alpha p z)^{\frac{1}{1-\alpha}}
$$

- With adjustment costs ($\tau>0$), employment decision characterized by two reservation thresholds, $z_{F}(n)$ and $z_{H}(n)$, such that:

$$
\begin{array}{rll}
n^{\prime}=n_{F}(z) & \text { if } & z<z_{F}(n) \\
n^{\prime}=n_{-1} & \text { if } & z \in\left[z_{F}(n), z_{H}(n)\right] \\
n^{\prime}=n_{H}(z) & \text { if } & z>z_{H}(n)
\end{array}
$$

- Inaction region wider with higher τ

Inaction regions: $\tau=0$

Inaction regions: $\tau=0.1$

Inaction regions: $\tau=0.2$

Inaction regions: $\tau=0.3$

Misallocation

- Without adjustment costs $(\tau=0)$, MPL equalized across firms:

$$
\frac{\partial f(z, n)}{\partial n}=\frac{1}{p}
$$

- With adjustment costs $(\tau=0)$, MPL is the solution of two necessary but not sufficient conditions:

$$
\begin{array}{r}
p \frac{\partial f(z, n)}{\partial n}+\frac{1}{1+r} \frac{\partial \tilde{v}(z, n)}{\partial n}=1 \quad \text { if } \quad n^{\prime}>n \\
p \frac{\partial f(z, n)}{\partial n}+\frac{1}{1+r} \frac{\partial \tilde{v}(z, n)}{\partial n}=[1+\underbrace{\frac{\partial g\left(n, n_{-1}\right)}{\partial n}}_{\tau}] \quad \text { if } \quad n^{\prime}<n
\end{array}
$$

Distribution of MPL

Marginal product of labor: $\frac{\partial f(z, n)}{\partial n}$

	Dispersion	Percentiles			
Firing cost: τ	St.Dev.	20th	40th	60th	80th
0	0	1	1	1	1
0.1	0.0439	0.9485	0.9546	1.0171	1.0349
0.2	0.0720	0.9097	0.9349	1.0156	1.0568
0.3	0.0911	0.8735	0.9199	1.0134	1.0715

Firing costs increase the dispersion of the MPL

Counterfactual outcomes

Firing cost: τ	0	0.1	0.2	0.3
Price	1	1.0085	1.0145	1.0193
Consumption (output)	1	0.9915	0.9856	0.9810
Employment	0.6000	0.5988	0.5986	0.5988
Profits	1	1.1561	1.2758	1.4127
\# firms	1	1.1350	1.2432	1.3702
Firm size	20.055	20.333	20.655	21.152
Labor productivity	1	0.9914	0.9818	0.9718
JC rate	0.1879	0.1403	0.1108	0.0953

Firing costs reduce aggregate productivity and aggregate output

Extension: Policy Distortions

Firm dynamics with policy distortions

- Restuccia D. and Rogerson R. 2008. "Policy Distortions and Aggregate Productivity with Heterogeneous Plants." Review of Economic Dynamics. Vol 11, No. 4, pp. 707-72
- Neoclassical model of growth
- Firms heterogeneity in productivity
- Exogenous idiosyncratic distortions
- General equilibrium
- Productivity losses of misallocation
- Large cross-country differences in income p.c.
- Evidence of heterogeneous distortions across countries:
- financial markets (e.g., Parente and Prescott 1999)
- labour regulation (e.g., Lagos 2006)
- gov. subsidies (e.g., Guner et al. 2008)
- Assess quantitative significance of firm-level distortions on output, productivity and employment
- misallocation across productive units
- Reduced form representation of idiosyncratic distortions to producer prices: tax/subsidy τ on output
- Results: heterogeneity in prices faced by producers can lead to decrease in TFP and output of up 50\%

Model overview

- Time is discrete, focus on steady-state
- Output price is the model numeraire $(p=1)$
- Wage w and interest rate r determined endogenously
- Representative household
- Consumption/savings decision
- Inelastic labor supply
- Endogenous measure of heterogeneous firms
- Perfect competition in product and labor markets
- Innate differences in firm-level productivity
- Entry-exit dynamics
- Free-entry

Representative Households

- Utility function of consumption C_{t}

$$
\mathcal{U}=\sum_{t=0}^{\infty} \beta^{t} U\left(C_{t}\right) \quad \beta \in(0,1)
$$

where β is the discount factor

- Budget constraint:

$$
C_{t}+I_{t} \leq w_{t}+r_{t} K_{t}+\Pi_{t}-T_{t}
$$

where Π_{t} are aggregate profits and T_{t} are net taxes

- Capital depreciates at rate δ

$$
K_{t+1}=(1-\delta) K_{t}+I_{t}
$$

- Problem of the HH:

$$
\begin{array}{rr}
& \mathscr{U}=\max _{C_{t}, K_{t+1}} \sum_{t=0}^{\infty} \beta^{t} U\left(C_{t}\right) \\
\text { s.t. } \quad C_{t}+K_{t+1} \leq w_{t}+\left(1+r_{t}-\delta\right) K_{t}+\Pi_{t}-T_{t} \\
K_{0}>0 \text { given }
\end{array}
$$

- First order condition (at the interior) imply:

$$
U^{\prime}\left(C_{t}\right)=\beta U^{\prime}\left(C_{t+1}\right)\left(1+r_{t}-\delta\right)
$$

- In steady-state, $C_{t}=C_{t+1}$ and

$$
r^{*}=\frac{1}{\beta}-1+\delta
$$

Heterogeneous firms

- Firms differ in productivity, z and distortion, τ
- Firm-level output

$$
f(z, n, k)=z n^{\alpha} k^{\gamma} \quad \alpha, \gamma \in(0,1)
$$

where $\alpha+\gamma<1$: decreasing return to scale.

- Static firm-level profits

$$
\pi(z, \tau ; w, r)=\max _{n \geq 0, k \geq 0}(1-\tau) f(z, n, k)-w n-r k-c_{o}
$$

where c_{o} denotes per-period operating costs.

- Let $n(z, \tau ; w, r)$ and $k(z, \tau ; w, r)$ be the optimal employment and capital demand function

Value of the incumbents

- $V(z, \tau ; w, r)$: value function for firm in states (z, τ) and prices (w, r)

$$
V(z, \tau ; w, r)=\pi(z, \tau ; w, r)+\frac{(1-\lambda)}{1+r-\delta} V(z, \tau ; w, r)
$$

where λ is an exogenous probability of exit

- Expected discounted value of per-period profits:

$$
V(z, \tau ; w, r)=\frac{\pi(z, \tau ; w, r)}{1-\frac{(1-\lambda)}{1+r-\delta}}
$$

Problem of the entrants

- Large measure of identical entrants pay c_{e} and draw productivity z and distortion τ from a joint distribution

$$
\Gamma(z, \tau)=P(\tau \mid z) H(z)
$$

- Entry decision: $V^{e}(z, \tau ; w, r)=\max \{0, V(z, \tau ; w, r)\}$. Solution to this problem is a policy for optimal entry: $\mathbf{1}^{e}(z, \tau ; w, r)$
- Measure of entry: $M \geq 0$
- Free entry condition:

$$
v^{e}(w, r)=\sum_{z} \sum_{\tau} V^{e}(z, \tau ; w, r) \Gamma(z, \tau) \leq c_{e}
$$

with equality if $M>0$.

Evolution of distribution

- Let $\mu_{t}\left(z, \tau ; w_{t}, r_{t}\right)$ be the measure of firms over individual state (z, τ) when wage and interest rate rate $\left(w_{t}, r_{t}\right)$ at time t
- Evolution of distribution over time:

$$
\mu_{t+1}\left(z, \tau ; w_{t+1}, r_{t+1}\right)=T_{t}\left(\mu_{t}\left(z, \tau ; w_{t}, r_{t}\right), M_{t}, w_{t}, r_{t}\right)
$$

where

$$
\begin{aligned}
& \left.T_{t}\left(\mu_{t}\left(z, \tau ; w_{t}, r_{t}\right), M_{t}, w_{t}, r_{t}\right), M_{t}, p_{t}\right)= \\
& \quad(1-\lambda) \mu_{t}\left(z, \tau ; w_{t}, r_{t}\right)+M \mathbf{1}^{e}\left(z, \tau ; w_{t}, r_{t}\right) P(\tau \mid z) H(z)
\end{aligned}
$$

- Endogenous labor and capital demand

$$
\begin{aligned}
L^{d} & =\sum_{z, \tau} n(z, \tau ; w, r) d \mu(z, \tau ; w, r) \\
K^{d} & =\sum_{z, \tau} k(z, \tau ; w, r) d \mu(z, \tau ; w, r)
\end{aligned}
$$

- Aggregate output

$$
Y^{s}=\sum_{z, \tau}\left[z n(z, \tau ; w, r)^{\alpha} k(z, \tau ; w, r)^{\gamma}-c_{o}\right] d \mu(z, \tau ; w, r)
$$

- Goods demand: $Y^{d}=C+\delta K+M c_{e}$
- Aggregate taxes: $\sum_{z, \tau} \tau f(z, n(z, \tau), k(z, \tau)) d \mu(z, \tau ; w, r)$

Equilibrium

A steady-state competitive equilibrium is a wage rate w, a rental rate r, a lump-sum tax T, a policy function $\mathbf{1}^{e}(z, \tau)$, a distribution $\mu(z, \tau)$, and a mass of entry M such that:

- Consumers optimality: $r=1 / \beta-1+\delta$
- Firms optimality: $\mathbf{1}^{e}(z, \tau)$ solves the problem of the entrants
- Free-entry: $v^{e}(w, r)=c_{e}$
- Markets clearing: $L^{d}=1 \quad K^{d}=\bar{K} \quad Y^{s}=Y^{d}$
- Balanced budget:

$$
T=\sum_{z, \tau} \tau f(z, n(z, \tau), k(z, \tau)) d \mu(z, \tau ; w, r)
$$

- Time-invariance: $\mu(z, \tau ; w, r)=M \frac{\mathbf{1}^{e}(z, \tau ; w, r) P(\tau \mid z) H(z)}{\lambda}$

Computation

- Step 0: fix interest rate to steady-state value: r^{*}
- Step 1: guess a wage rate w_{0}
- Step 2: solve for the value of the incumbent, $v\left(z, \tau ; w_{0}, r^{*}\right)$
- Step 3: solve the problem of the potential entrant, $\mathbf{1}^{e}\left(z, \tau ; w_{0}, r^{*}\right)$
- Step 4: compute the value of entry, $v^{e}\left(w_{0}, r^{*}\right)$ and check if free-entry condition is satisfied:
- if no, make a new guess w_{1} and go back to step 2 till convergence
- if yes, store $w^{*}=w_{0}$
- Step 5: compute the invariant distribution of plants (normalized $M=1$)
- Step 6: find mass of firms such that the labor market clears

Calibration

- Distortions: U.S treated as un-distorted benchmark, $\tau=0$
- Period model: 1 Year $\Longrightarrow r=0.04, \beta=0.96$
- Decreasing return to scale: $\alpha+\gamma=0.85$. Two-third assigned to labor return $\Longrightarrow \alpha=0.57, \gamma=0.28$
- Depreciation to match capital/output ratio of $2.3 \Longrightarrow \delta=0.08$
- No operating costs, $c_{o}=0$.
- Entry cost normalized to $1, c_{e}=1$ (identification issues: changes to c_{e} isomorphic to changes in establishment-level productivity)

Calibration

Productivity state-space:

- 100 nodes
- Lowest productivity normalized to 1
- Range of values chosen to match the range of employment across establishments

$$
\frac{n_{i}}{n_{j}}=\left(\frac{z_{i}}{z_{j}}\right)^{\frac{1}{1-\gamma-\alpha}}
$$

In US data, biggest firms are 10000 times larger than smallest. Given α and γ, largest productivity equal to 3.98

- Distribution of productivity $H(z)$ to match observed firm-size distribution

Calibration

Benchmark economy

Experiments

- Two main experiments:
- Uncorrelated distortions, τ independent of z
- half producers taxed, half subsidized
- resources flow from taxed to subsidized, but no systematic effect across productivity classes
- Correlated distortions, either positively or negatively
- lowest half producers subsidized, top half taxed
- systematic reallocation across productivity classes, not just within productivity class
- Size of the subsidy so that the net effect on steady-state capital accumulation is zero.

Uncorrelated distortions

		τ_{t}				
Variable	Description	0.1	0.2	0.3	0.4	
Y	Relative Output	0.98	0.96	0.93	0.92	
TFP	Relative TFP	0.98	0.96	0.93	0.92	
E	Relative employment	1.00	1.00	1.00	1.00	
Y_{s} / Y	Output of subsidized	0.72	0.85	0.93	0.97	
S / Y	Subsidy share of output	0.05	0.08	0.09	0.10	
τ_{s}	Subsidy rate	0.06	0.09	0.10	0.11	

- comparatively small effect on TFP and output, no effect on E
- subsidies to undo effects on capital accumulation are smaller
- as tax increases, larger TFP-effect and larger subsidies

Correlated distortions

		τ_{t}				
Variable	Description	0.1	0.2	0.3	0.4	
Y	Relative Output	0.90	0.80	0.73	0.69	
TFP	Relative TFP	0.90	0.80	0.73	0.69	
E	Relative employment	1.00	1.00	1.00	1.00	
Y_{s} / Y	Output of subsidized	0.42	0.67	0.83	0.92	
S / Y	Subsidy share of output	0.17	0.32	0.43	0.49	
τ_{s}	Subsidy rate	0.40	0.48	0.52	0.53	

- qualitatively similar to uncorrelated case
- larger negative effect on TFP and output
- also more costly to finance (higher subsidies)

Extensions

- Non-constant capital stock
- taxing all but some exempt producers at 40% rate and no subsidy
- lower capital stock, wages and entry rate also fall in proportion
- amplifies effects on TFP
- Taxes on capital and labor

